Natural and Synthetic Biomedical Polymers.

Polymers are important and attractive biomaterials for researchers and clinical applications due to the ease of tailoring their chemical, physical and biological properties for target devices. Due to this versatility they are rapidly replacing other classes of biomaterials such as ceramics or metals...

Full description

Saved in:
Bibliographic Details
Main Author: Kumbar, Sangamesh
Other Authors: Laurencin, Cato, Deng, Meng
Format: eBook
Language:English
Published: Burlington : Elsevier Science, 2014.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Front Cover; Natural and Synthetic Biomedical Polymers; Copyright; Contents; Dedication; Contributors; Foreword; Chapter 1: Polymer Synthesis and Processing; 1.1 . Introduction; 1.2 . Types of Polymerization; 1.2.1 . Addition Polymerization; 1.2.2 . Condensation Polymerization; 1.2.3 . Metathesis Polymerization; 1.3 . Techniques of Polymerization; 1.3.1 . Solution Polymerization; 1.3.2 . Bulk (Mass) Polymerization; 1.3.3 . Suspension Polymerization; 1.3.4 . Precipitation Polymerization; 1.3.5 . Emulsion Polymerization; 1.4 . Polymers: Properties, Synthesis, and Their Biomedical Applications.
  • 1.4.1 . Polycaprolactone1.4.2 . Polyethylene Glycol; 1.4.3 . Polyurethane; 1.4.4 . Polydioxanone or Poly- p -Dioxanone; 1.4.5 . Polymethyl Methacrylate; 1.4.6 . Polyglycolic Acid or Polyglycolide; 1.4.7 . Polylactic Acid or Polylactide; 1.4.8 . Polylactic- co -Glycolic Acid; 1.4.9 . Polyhydroxybutyrate; 1.4.10 . Polycyanoacrylates; 1.4.11 . Polyvinylpyrrolidone; 1.4.12 . Chitosan; 1.4.13 . Gelatin; 1.4.14 . Carrageenan; 1.4.15 . Hyaluronic Acid; 1.4.16 . Xanthan Gum; 1.4.17 . Acacia Gum; 1.4.18 . Alginate; 1.5 . Processing of Polymers for Biomedical Devices.
  • 1.5.1 . Fabrication of Polymer Films1.5.1.1 . Solution Casting; 1.5.1.2 . Melt Pressing; 1.5.1.3 . Melt Extrusion; 1.5.1.4 . Bubble Blown Method; 1.5.2 . Spinning Industrial Polymers; 1.5.2.1 . Solution Spinning; 1.5.2.1.1 . Wet Spinning; 1.5.2.1.2 . Electrospinning; 1.5.2.1.3 . Dry Spinning; 1.5.2.1.4 . Melt Spinning; 1.5.3 . Fabrication of Shaped Polymer Objects; 1.5.3.1 . Compression Molding; 1.5.3.2 . Injection Molding; 1.5.3.3 . Reaction Injection Molding; 1.5.3.4 . Blow Molding; 1.5.3.5 . Extrusion Molding; 1.5.4 . Calendaring; 1.6 . Future Perspectives; 1.7 . Conclusions.
  • AcknowledgmentsReferences; Chapter 2: Hierarchical Characterization of Biomedical Polymers; 2.1 . Introduction; 2.2 . The Hierarchical Characterization Approach; 2.3 . Bulk Characterization; 2.3.1 . Thermal Properties; 2.3.2 . Mechanical Properties; 2.3.3 . Optical Properties; 2.3.4 . Electrical Properties; 2.4 . Surface Characterization; 2.4.1 . Microscopic Characterization; 2.4.2 . Surface Hydrophobicity; 2.4.3 . Spectroscopic Characterization; 2.5 . Future Prospects; References; Chapter 3: Proteins and Poly(Amino Acids); 3.1 . Introduction; 3.2 . Fibrin-Based Biomaterials.
  • 3.3 . Elastin-Based Biomaterials3.4 . Silk-Based Biomaterials; 3.5 . Collagen-Based Biomaterials; 3.6 . Poly(glutamic Acid)-Based Biomaterials; 3.7 . Cyanophycin and Poly(Aspartic Acid)-Based Biomaterials; 3.8 . Poly- l -Lysine-Based Biomaterials; 3.9 . Conclusions and Future Work; References; Chapter 4: Natural Polymers: Polysaccharides and Their Derivatives for Biomedical Applications; 4.1 . Introduction; 4.2 . Hyaluronic Acid; 4.2.1 . Chemical Structure, Properties, and Sources; 4.2.2 . Attempts Made in Tissue Engineering and Drug Delivery; 4.2.2.1 . HA Alone.