Fragmentation.

Saved in:
Bibliographic Details
Main Author: Gordon, Mark S.
Format: eBook
Language:English
Published: Newark : John Wiley & Sons, Incorporated, 2017.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Fragmentation; Contents; List of Contributors; Preface; 1 Explicitly Correlated Local Electron Correlation Methods; 1.1 Introduction; 1.2 Benchmark Systems; 1.3 Orbital-Invariant MP2 Theory; 1.4 Principles of Local Correlation; 1.5 Orbital Localization; 1.6 Local Virtual Orbitals; 1.6.1 Pseudo-Canonical Pair-Specific Orbitals; 1.6.2 Projected Atomic Orbitals; 1.6.3 Pair Natural Orbitals; 1.6.4 Linear Scaling PNO Generation; 1.6.5 Orbital-Specific Virtuals (OSVs); 1.7 Choice of Domains; 1.8 Approximations for Distant Pairs; 1.8.1 Bipolar Multipole Approximations of Electron Repulsion Integrals.
  • 1.8.2 Approximations of Distant Pair Energies1.9 Local Coupled-Cluster Methods (LCCSD); 1.9.1 Weak Pair Approximations; 1.9.2 Long-Range Cancellations of Terms in the LCCSD Equations; 1.9.3 Projection Approximations; 1.10 Triple Excitations; 1.11 Local Explicitly Correlated Methods; 1.11.1 PNO-LMP2-F12; 1.11.2 PNO-LCCSD-F12; 1.12 Technical Aspects; 1.12.1 Local Density Fitting; 1.12.2 Parallelization; 1.13 Comparison of Local Correlation and Fragment Methods; 1.14 Summary; Appendix A: The LCCSD Equations; Appendix B: Derivation of the Interaction Matrices; References.
  • 2 Density and Potential Functional Embedding: Theory and Practice2.1 Introduction; 2.2 Theoretical Background; 2.3 Density Functional Embedding Theory; 2.3.1 Basic Theory; 2.3.1.1 Definition of the Embedding Potential; 2.3.1.2 Optimization Procedure; 2.3.2 Embedding Potential Construction-Implementations in Planewave Codes; 2.3.2.1 Implementation with Pseudopotentials in ABINIT; 2.3.2.2 Implementation with PAW in VASP; 2.3.2.3 Penalty Functions-Damping the Unphysical Oscillations; 2.3.2.4 Illustrative Example; 2.3.3 Embedded Cluster Calculations; 2.3.3.1 Calculation of Embedding Integrals.
  • 2.3.3.2 Evaluation of the Total Energy2.3.3.3 Examples; 2.4 Potential Functional EmbeddingTheory; 2.4.1 Basic Theories and Technical Details; 2.4.1.1 Definition of Energies; 2.4.1.2 Optimized Effective Potential (OEP) Scheme for Exact Kinetic Energy; 2.4.1.3 Energy Gradient; 2.4.1.4 Summary of the Code Structure; 2.4.2 Illustrative Examples; 2.4.2.1 AlP Diatomic; 2.4.2.2 H2O on MgO (001); 2.5 Summary and Outlook; Acknowledgments; References; 3 Modeling and Visualization for the Fragment Molecular Orbital Method with the Graphical User Interface FU, and Analyses of Protein-Ligand Binding.
  • 3.1 Introduction3.2 Overview of FMO; 3.3 Methodology; 3.3.1 FMO/PCM Formulation in the Presence of Dummy Atoms; 3.3.2 New Analyses Defining the Desolvation Penalty in the Protein-Ligand Binding; 3.3.2.1 Asymmetric Binding Analysis (ABA); 3.3.2.2 Symmetric Binding Analysis (SBA); 3.3.2.3 Symmetric Binding Analysis with Separated Cavitation (SBAC); 3.3.2.4 Fragment-Wise Elaboration of SBA in FMO; 3.3.2.5 Fragment-Wise Elaboration of SBAC; 3.3.3 Application of Analyses to Protein-Ligand Binding; 3.4 GUI Development; 3.4.1 Outline of FU; 3.4.2 Modeling and Result Visualization.