Finite elasticity theory / David J. Steigmann.

This text is suitable for a first-year graduate course on non-linear elasticity theory. It is aimed at graduate students, post-doctoral fellows and researchers working in mechanics.

Saved in:
Bibliographic Details
Main Author: Steigmann, David J. (Author)
Format: eBook
Language:English
Published: Oxford : Oxford University Press, 2017.
Edition:First edition.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1002189281
003 OCoLC
005 20240623213015.0
006 m o d
007 cr |||||||||||
008 170831t20172017enk ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d N$T  |d OCLCF  |d AZU  |d UPM  |d LGG  |d OTZ  |d CUS  |d EBLCP  |d STBDS  |d CEF  |d KSU  |d RRP  |d WYU  |d OCLCQ  |d BRX  |d OCLCQ  |d UKAHL  |d K6U  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1002697607  |a 1021174121  |a 1066447776 
020 |a 0192528076  |q (electronic bk.) 
020 |a 9780192528070  |q (electronic bk.) 
020 |a 9780191746536 
020 |a 0191746533 
020 |z 9780198567783 
020 |z 0198567782 
035 |a (OCoLC)1002189281  |z (OCoLC)1002697607  |z (OCoLC)1021174121  |z (OCoLC)1066447776 
050 4 |a QA931 
072 7 |a SCI  |x 041000  |2 bisacsh 
072 7 |a SCI  |x 096000  |2 bisacsh 
049 |a HCDD 
100 1 |a Steigmann, David J.,  |e author. 
245 1 0 |a Finite elasticity theory /  |c David J. Steigmann. 
250 |a First edition. 
264 1 |a Oxford :  |b Oxford University Press,  |c 2017. 
264 4 |c ©2017 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 8 |a This text is suitable for a first-year graduate course on non-linear elasticity theory. It is aimed at graduate students, post-doctoral fellows and researchers working in mechanics. 
588 0 |a Online resource; title from HTML homepage (Oxford, viewed April 20, 2018). 
505 0 |a Cover; Preface; Contents; 1 Concept of an elastic material; 2 Observers and invariance; 3 Mechanical power and hyperelasticity; 3.1 Elasticity and energy; 3.2 Work inequality; 4 Material symmetry; 4.1 Stress response; 4.2 Strain energy; 4.3 Isotropy; 5 Fiber symmetry; 6 Stress response in the presence of local constraints on the deformation; 6.1 Local constraints; 6.2 Constraint manifolds and the Lagrange multiplier rule; 6.3 Material symmetry in the presence of constraints; 7 Some boundary-value problems for uniform isotropic incompressible materials. 
505 8 |a 7.1 Problems exhibiting radial symmetry with respect to a fixed axis7.1.1 Pressurized cylinder; 7.1.2 Azimuthal shear; 7.1.3 Torsion of a solid circular cylinder; 7.1.4 Combined extension and torsion; 7.2 Problems exhibiting radial symmetry with respect to a fixed point; 7.2.1 Integration of the equation; 7.2.2 Pressurized shells, cavitation; 8 Some examples involving uniform, compressible isotropic materials; 8.1 Spherical symmetry, revisited; 8.2 Plane strain; 8.3 Radial expansion/compaction; 9 Material stability, strong ellipticity and smoothness of equilibria. 
505 8 |a 9.1 Small motions superposed on finitely deformed equilibrium states9.2 Smoothness of equilibria; 9.3 Incompressibility; 10 Membrane theory; 10.1 General theory; 10.2 Pressurized membranes; 10.3 Uniqueness of the director; 10.4 Isotropic materials; 10.5 Axially symmetric deformations of a cylindrical membrane; 10.6 Bulging of a cylinder; 11 Stability and the energy criterion; 11.1 The energy norm; 11.2 Instability; 11.3 Quasiconvexity; 11.4 Ordinary convexity; 11.4.1 Objections to ordinary convexity; 11.5 Polyconvexity; 11.6 Rank-one convexity. 
505 8 |a 11.7 Equilibria with discontinuous deformation gradients11.8 The Maxwell-Eshelby relation; 11.8.1 Example: alternating simple shear; 12 Linearized theory, the second variation and bifurcation of equilibria; 13 Elements of plasticity theory; 13.1 Elastic and plastic deformations; 13.2 Constitutive response; 13.3 Energy and dissipation; 13.4 Invariance; 13.5 Yielding, the work inequality and plastic flow; 13.6 Isotropy; 13.7 Rigid-plastic materials; 13.8 Plane strain of rigid-perfectly plastic materials: slip-line theory; 13.8.1 State of stress, equilibrium; 13.8.2 Velocity field. 
505 8 |a Supplemental notes1 The cofactor; 2 Gradients of scalar-valued functions of tensors; 3 Chain rule; 4 Gradients of the principal invariants of a symmetric tensor; 5 Relations among gradients; 6 Extensions; 7 Korn's inequality; 8 Poincaré's inequality; Index. 
650 0 |a Elasticity. 
650 0 |a Mechanical engineering  |x Mathematical models. 
650 7 |a SCIENCE  |x Mechanics  |x General.  |2 bisacsh 
650 7 |a SCIENCE  |x Mechanics  |x Solids.  |2 bisacsh 
650 7 |a Elasticity  |2 fast 
650 7 |a Mechanical engineering  |x Mathematical models  |2 fast 
758 |i has work:  |a Finite elasticity theory (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFF9VqFfdbmmKJFxgTVxcK  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Steigmann, David J.  |t Finite elasticity theory.  |b first edition.  |d Oxford, United Kingdom : Oxford University Press, 2017  |z 0198567782  |z 9780198567783  |w (DLC) 2017932403  |w (OCoLC)982092883 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://academic.oup.com/book/27097  |y Click for online access 
903 |a OUP-SOEBA 
994 |a 92  |b HCD