Sustainable and green electrochemical science and technology / Keith Scott.

Saved in:
Bibliographic Details
Main Author: Scott, K. (Keith), 1951- (Author)
Format: eBook
Language:English
Published: Hoboken, New Jersey : Wiley Blackwell, 2017.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Cover
  • Title Page
  • Copyright
  • Contents
  • Preface
  • Acknowledgement
  • Chapter 1 Introduction to Electrochemical Sustainable Processes
  • 1.1 Introduction
  • 1.2 Effluent Treatment and Recycling
  • 1.3 Green Electrochemistry
  • 1.4 Electrochemistry and Energy Sustainability
  • 1.5 Hydrogen Economy and Fuel Cells
  • 1.5.1 The Hydrogen Economy
  • 1.5.1.1 Hydrogen Generation, Storage and Use
  • 1.5.2 Fuel Cells
  • 1.6 Conclusions
  • References
  • Chapter 2 Electrochemistry, Electrocatalysis and Thermodynamics
  • 2.1 The Electrochemical Cell
  • 2.1.1 Faraday's Law
  • 2.2 Electrochemical Thermodynamics
  • 2.2.1 Gibbs Free Energy
  • 2.2.2 Free Energy and Equilibrium Constants
  • 2.2.3 Free Energy and Cell Potentials
  • 2.2.3.1 Cell Potential versus pH Diagrams
  • 2.3 Types of Electrochemical Reactions
  • 2.3.1 Electric Double Layer
  • 2.3.2 Electrochemical Reaction
  • 2.3.3 Electrochemical Kinetics
  • 2.3.3.1 Activation Energy for Electron Transfer
  • 2.3.4 A Model of Electrode Kinetics
  • 2.3.4.1 Experimental Behaviour
  • 2.3.4.2 The Generalized Butler-Volmer Equation
  • 2.4 Mass Transport and Electrochemical Reactions
  • 2.4.1 Electrode Kinetics and Mass Transport
  • 2.4.2 Butler-Volmer Equations and Departure from Equilibrium Potentials
  • 2.4.3 Multistep Reactions
  • 2.4.4 The Role of Adsorption
  • 2.4.5 The Hydrogen Electrode and Oxygen Electrode Reactions
  • 2.4.5.1 Hydrogen Oxidation and Evolution
  • 2.4.5.2 The Oxygen Electrode
  • 2.4.6 Voltammetry and the Platinum Electrode
  • 2.4.6.1 Cyclic Voltammetry
  • 2.4.7 Rotating Disc Electrode
  • 2.4.7.1 Koutecky-Levich Analysis
  • 2.4.8 Rotating Ring Disc Electrode
  • 2.5 Photoelectrochemistry
  • 2.5.1 Semiconductors and Light Absorption
  • 2.5.2 Electron Transfer at Semiconductor Electrodes
  • 2.5.3 Current-Potential Relations
  • 2.6 Electrochemical Impedance Spectroscopy.
  • 2.6.1 Polarization Resistance
  • 2.6.2 Warburg Impedance
  • References
  • Chapter 3 Electrochemical Cells, Materials and Reactors
  • 3.1 Electrochemical Reactors
  • 3.1.1 Current Efficiency
  • 3.1.2 Production Rates
  • 3.1.3 Energy Requirements
  • 3.1.3.1 Cell Voltage
  • 3.1.4 Energy Requirements and Efficiency in Hydrogen Production
  • 3.1.4.1 Thermodynamics of Steam Electrolysis
  • 3.1.4.2 Efficiency of Water Splitting to Hydrogen
  • 3.2 Fuel Cells
  • 3.2.1 Fuel Cell Efficiency
  • 3.2.2 Practical Efficiencies
  • 3.2.3 Fuel Cell Voltage
  • 3.2.4 Mass Transport and Concentration Effects
  • 3.2.5 Fuel and Oxidant Crossover
  • 3.2.6 Figures of Merit
  • 3.3 Batteries
  • 3.3.1 C-Rate
  • 3.4 Capacitors
  • 3.4.1 Asymmetric Supercapacitors
  • 3.5 Electrochemical Cell Engineering
  • 3.5.1 Cell Designs
  • 3.5.1.1 Temperature Control
  • 3.5.1.2 The Distribution of Power and Current
  • 3.5.2 Three-Dimensional Electrodes
  • 3.5.3 Cell Components and Materials
  • 3.5.3.1 Electrode Materials
  • 3.5.3.2 Electrodes
  • 3.5.3.3 Cell Membranes
  • 3.5.3.4 Ion-Exchange Membranes
  • 3.5.3.5 Species Transport in Membranes and Diaphragms
  • 3.5.3.6 The Transport Number
  • 3.5.3.7 Transport Processes in Diaphragms
  • 3.5.3.8 Membranes and the Transport of Ions
  • References
  • Chapter 4 Carbon Dioxide Reduction and Electro-Organic Synthesis
  • 4.1 Electrochemical Reduction of Carbon Dioxide
  • 4.1.1 Technological Applications
  • 4.1.1.1 Commercial Outlook
  • 4.1.2 High Temperature Carbon Dioxide Electrolysis
  • 4.1.3 Carbon Capture
  • 4.1.4 Photoelectrochemical Reduction of Carbon Dioxide
  • 4.1.5 Biological Electrochemical Reduction Processes
  • 4.1.5.1 Bacteria and Enzyme Photocathodes for Carbon Dioxide Reduction
  • 4.2 Organic Synthesis
  • 4.2.1 Electro-Organic Syntheses
  • 4.2.2 Electrosynthesis of Adiponitrile
  • 4.3 Green Electro-Organic Synthesis.
  • 4.3.1 Ionic Liquids
  • 4.3.2 Paired Electro-Organic Synthesis
  • 4.4 Conclusions
  • References
  • Chapter 5 Hydrogen Production and Water Electrolysis
  • 5.1 Fossil Fuel Based Hydrogen Production
  • 5.2 Hydrogen via Electrolysis
  • 5.2.1 Alkaline Electrolysers
  • 5.2.1.1 Electrolyser Types and Materials
  • 5.2.1.2 Electrode Materials
  • 5.2.2 Solid Polymer Electrolyte Water Electrolysis
  • 5.2.2.1 The Membrane Electrolyte
  • 5.2.3 Electrocatalysts
  • 5.2.3.1 Hydrogen Evolution
  • 5.2.3.2 Oxygen Evolution
  • 5.2.3.3 Catalyst Preparation
  • 5.2.4 Production Rates and Energy Requirements in Water Electrolysis
  • 5.2.5 Alkaline Polymer Electrolytes
  • 5.2.6 High-Temperature Electrolysis of Steam
  • 5.2.7 Electrolysis Using Organic Fuels
  • 5.2.7.1 Electrolysis of Alcohols
  • 5.2.8 Electrolytic Oxygen Generation
  • 5.2.8.1 Electrochemical Air Purification
  • 5.3 Photoelectrolysis
  • 5.3.1 Photocatalysts
  • 5.3.1.1 Dye-Sensitized Solar Cells
  • 5.3.2 Photocathodes and Tandem Cells
  • 5.4 Thermal and Electrochemical Generation of Hydrogen from Water
  • 5.4.1 Thermochemical Hydrogen Production
  • 5.4.2 Electrolysis and Thermochemical Cycles
  • 5.4.2.1 Calcium-Bromine Cycle
  • 5.4.2.2 Sulfur-Hydrogen Cycle
  • 5.4.2.3 Sulfur-Bromine Cycle
  • 5.4.2.4 Photoelectrocatalytic Process
  • 5.4.2.5 Low Temperature Thermochemical Cycle
  • 5.5 Chemical Production of Hydrogen
  • 5.6 Conclusions
  • References
  • Chapter 6 Inorganic Synthesis
  • 6.1 Chemicals from the Electrolysis of Halides
  • 6.1.1 The Reaction Chemistry for the Chlorine
  • 6.1.2 Chlorine and Sodium Hydroxide Production: The Chlor-Alkali Industry
  • 6.1.2.1 Membrane Cells
  • 6.1.2.2 Diaphragm Cells
  • 6.1.2.3 Mercury Cells
  • 6.1.2.4 Oxygen Cathodes
  • 6.1.3 Hydrochloric Acid Electrolysis
  • 6.1.4 Fluorine
  • 6.1.5 Hypochlorite and Chlorate
  • 6.1.6 Perchlorate and Perchloric Acid.
  • 6.1.7 Bromate, Iodate and Periodate
  • 6.2 Electrolytic Processes for Metal Processing
  • 6.2.1 Electrowinning
  • 6.2.1.1 Aqueous Electrolytes
  • 6.2.2 Molten Salt Electrolytes
  • 6.2.2.1 Aluminium Production
  • 6.2.3 Ionic Liquid Electrolytes
  • 6.3 Inorganic Compounds and Salts
  • 6.3.1 Peroxidisulfate Electrosynthesis
  • 6.3.2 Permanganate
  • 6.4 Generation of Chemical Oxidants
  • 6.4.1 Hydrogen Peroxide
  • 6.4.1.1 Electrochemistry of Hydrogen Peroxide Synthesis
  • 6.4.1.2 Commercial Development
  • 6.4.2 Ozone
  • 6.4.2.1 Ozone Production from Water Electrolysis
  • 6.5 Conclusions
  • References
  • Chapter 7 Electrochemical Energy Storage and Power Sources
  • 7.1 Batteries
  • 7.1.1 Secondary Batteries
  • 7.1.1.1 Ragone Plots
  • 7.1.2 Types of Batteries
  • 7.1.3 Lithium-Ion Batteries
  • 7.1.4 Molten Salt Batteries
  • 7.1.5 Metal-Air Batteries
  • 7.1.5.1 Zinc-Air Battery
  • 7.1.5.2 Lithium-Air Battery
  • 7.1.5.3 Aprotic Solvent Rechargeable Li-Air Battery
  • 7.1.5.4 Solid-State Li-Air Battery
  • 7.1.5.5 Mixed Aqueous/Aprotic
  • 7.1.5.6 Other Non-Aqueous Metal-Air Batteries
  • 7.1.5.7 Sodium-Air Batteries
  • 7.1.5.8 Other Battery Development
  • 7.1.6 Redox Flow Batteries
  • 7.1.6.1 Redox Battery Systems
  • 7.1.6.2 All-Vanadium Redox Flow Cell
  • 7.1.6.3 Vanadium-Chloride/Polyhalide Redox Flow Cell
  • 7.1.6.4 Polysulfide-Bromide Fuel Cell
  • 7.1.6.5 Vanadium-Cerium Redox Flow Cell
  • 7.1.7 Carbon-Air Batteries
  • 7.1.7.1 Direct Carbon-Air Fuel Cell Reactions
  • 7.1.7.2 Direct Carbon Fuel Cell Technology Based on Metal Hydroxide Electrolyte
  • 7.1.8 Borohydride Cells
  • 7.1.8.1 Hydrogen Peroxide Oxidant
  • 7.2 Supercapacitors
  • 7.2.1 Electrolytes for Supercapacitors
  • 7.2.2 Hybrid or Asymmeytric Supercapacitors
  • 7.2.2.1 Gel Polymer Electrolytes
  • 7.3 Biological Fuel Cells
  • 7.3.1 Microbial Fuel Cells.
  • 7.3.1.1 Measuring Microbial Fuel Cell Performance
  • 7.3.1.2 Performance of a Microbial Fuel Cell
  • 7.3.1.3 Membranes for Microbial Fuel Cells
  • 7.3.1.4 Applications of Microbial Fuel Cells
  • 7.3.1.5 Treatment of Biodegradable Organic Matter
  • 7.3.2 Enzymatic Fuel Cells
  • 7.3.2.1 Mediated Electron-Transfer
  • 7.3.2.2 Enzymes for Cathodic Reactions in Biological Fuel Cells
  • References
  • Chapter 8 Electrochemical Energy Systems and Power Sources: Fuel Cells
  • 8.1 Introduction
  • 8.2 Principle of Fuel Cell Operation
  • 8.3 Fuel Cell Systems
  • 8.3.1 Cell Stacking
  • 8.3.2 Fuel Cell Balance of Plant
  • 8.4 Polymer Electrolyte Membrane Fuel Cells
  • 8.4.1 Polymer Electrolyte Membrane Fuel Cell structure
  • 8.4.2 Gas Diffusion Layer
  • 8.4.3 Water Management
  • 8.4.4 Catalysts
  • 8.4.5 Membrane Materials
  • 8.4.6 Material Issues in Polymer Electrolyte Membrane Fuel Cells
  • 8.4.7 Polymer Electrolyte Membrane Fuel Cell Performance
  • 8.4.8 Higher Temperature Membranes
  • 8.4.9 Membranes with Heteropolyacids
  • 8.4.9.1 Pyrophosphates
  • 8.4.9.2 Solid Acids
  • 8.4.10 Alkaline Anion-Exchange Membranes
  • 8.5 Alkaline Fuel Cells
  • 8.5.1 Cell Components
  • 8.5.1.1 Gas Diffusion Electrodes
  • 8.5.1.2 Commercial Development
  • 8.6 Medium and High Temperature Fuel Cells
  • 8.6.1 Phosphoric Acid Fuel Cell
  • 8.6.1.1 Cell Components
  • 8.6.1.2 Bipolar Plates
  • 8.6.1.3 Performance
  • 8.6.2 Molten Carbonate Fuel Cell
  • 8.6.2.1 Cell Components
  • 8.6.2.2 Performance
  • 8.6.2.3 Internal Reforming Molten Carbonate Fuel Cell
  • 8.6.2.4 Degradation
  • 8.6.2.5 Commercial Plants
  • 8.6.3 Solid Oxide Fuel Cells
  • 8.6.3.1 Cell Components
  • 8.6.3.2 Cell and Stack Designs
  • 8.6.3.3 Performance
  • 8.6.4 Proton Conducting Ceramic Fuel Cells
  • 8.7 Direct Alcohol Fuel Cells
  • 8.7.1 Introduction
  • 8.7.2 Anodic Oxidation of Methanol.