Entire Solutions for Bistable Lattice Differential Equations with Obstacles.

The authors consider scalar lattice differential equations posed on square lattices in two space dimensions. Under certain natural conditions they show that wave-like solutions exist when obstacles (characterized by "holes") are present in the lattice. Their work generalizes to the discret...

Full description

Saved in:
Bibliographic Details
Main Author: Hoffman, Aaron
Other Authors: Hupkes, Hermen, Vleck, E. S. Van
Format: eBook
Language:English
Published: Providence : American Mathematical Society, 2018.
Series:Memoirs of the American Mathematical Society.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Mu 4500
001 on1024251200
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|---|||||
008 180224s2018 riu o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d OCLCO  |d IDB  |d OCLCQ  |d LOA  |d OCLCO  |d OCLCF  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d SXB  |d OCLCQ 
020 |a 9781470442002 
020 |a 1470442000 
035 |a (OCoLC)1024251200 
050 4 |a QA171.5  |b .H644 2017eb 
049 |a HCDD 
100 1 |a Hoffman, Aaron. 
245 1 0 |a Entire Solutions for Bistable Lattice Differential Equations with Obstacles. 
260 |a Providence :  |b American Mathematical Society,  |c 2018. 
300 |a 1 online resource (132 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v v. 250 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Chapter 1. Introduction; Reaction-Diffusion Problems; Existence of Waves; Stability of Waves; The Program; Pre-interaction regime; Interaction regime; Post-interaction regime -- rest state; Post-interaction regime -- convergence to wave; Organization; Chapter 2. Main Results; 2.1. Homogeneous Lattice; 2.2. Obstructed Lattice; Chapter 3. Preliminaries; Chapter 4. Spreading Speed; Chapter 5. Large Disturbances; 5.1. Notation; 5.2. Preliminary Computations; 5.3. The Ansatz; 5.4. The expanding plateau; 5.5. The function; 5.6. Construction of sub-solution. 
505 8 |a Chapter 6. The Entire SolutionChapter 7. Various Limits; Chapter 8. Proof of Theorem 2.3; Chapter 9. Discussion; Acknowledgments; Bibliography; Back Cover. 
520 |a The authors consider scalar lattice differential equations posed on square lattices in two space dimensions. Under certain natural conditions they show that wave-like solutions exist when obstacles (characterized by "holes") are present in the lattice. Their work generalizes to the discrete spatial setting the results obtained in Berestycki, Hamel, and Matuno (2009) for the propagation of waves around obstacles in continuous spatial domains. The analysis hinges upon the development of sub and super-solutions for a class of discrete bistable reaction-diffusion problems and on a generalization o. 
650 0 |a Lattice theory. 
650 0 |a Differential equations. 
650 7 |a Differential equations  |2 fast 
650 7 |a Lattice theory  |2 fast 
700 1 |a Hupkes, Hermen. 
700 1 |a Vleck, E. S. Van. 
758 |i has work:  |a Entire solutions for bistable lattice differential equations with obstacles (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGcyKxvpkVmyckMRBJ3Hfq  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Hoffman, Aaron.  |t Entire Solutions for Bistable Lattice Differential Equations with Obstacles.  |d Providence : American Mathematical Society, ©2018  |z 9781470422011 
830 0 |a Memoirs of the American Mathematical Society. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=5291687  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD