Inorganic massive batteries / Virginie Viallet and Benoit Fleutot.

Since the 90s, the Li-ion batteries are the most commonly used energy storage systems. The demand for performance and safety is constantly growing, current commercial batteries based liquid electrolytes or gels may not be able to meet the needs of emerging applications such as for electric and hybri...

Full description

Saved in:
Bibliographic Details
Main Authors: Viallet, Virginie (Author), Fleutot, Benoit (Author)
Format: eBook
Language:English
Published: London : Hoboken, NJ : ISTE Ltd. ; John Wiley & Sons, Inc., 2018.
Series:Energy storage. Batteries, supercapacitors set ; v. 4.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Cover; Half-Title Page; Title Page; Copyright Page; Contents; Introduction; 1. Anatomy of an All-Solid-State Battery; 1.1. Constituents of an all-solid battery; 1.1.1. Nature of solid electrolytes: required qualities; 1.1.2. Positive electrode materials; 1.1.3. Negative electrode materials; 1.1.4. Conductive additive; 1.1.5. Formulation of electrodes; 1.2. Shaping mehods of all-solid batteries; 1.2.1. Assembly by cold pressing; 1.2.2. Design by high temperature sintering; 2. Solid Ionic Conductors; 2.1. Introduction; 2.2. Solid lithium-ion conductors; 2.2.1. The Garnets.
  • 2.2.2. The NASICON AxMM'(XO4)3 structure2.2.3. The compounds LISICON and Thio-LISICON; 2.2.4. Ion conductive glass and glass-ceramics; 2.2.5. The Argyrodites; 2.2.6. The complex hydrides; 2.2.7. Phosphorus and lithium oxynitride or LiPON; 2.2.8. Anti-perovskite lithium-rich solid electrolytes; 2.2.9. Solid polymer electrolytes; 2.3. Solid sodium-ion conductors; 2.3.1. NASICON compounds; 2.3.2. Na3PS4; 3. All-Solid-State Battery Technology Using Solid Sulfide Electrolytes; 3.1. Monolithic Li-ion a#x80;#x9C;all-solid-statea#x80;#x9D; batteries; 3.1.1. The first a#x80;#x9C;all-solid-statea#x80;#x9D; batteries.
  • 3.1.2. Second generation a#x80;#x9C;all-solid-statea#x80;#x9D; batteries3.1.3. Toward High Performance Batteries; 3.1.4. Batteries using lithium argyrodite electrolytes; 3.1.5. Li10XP2S12 (X = Ge, Si, Sn) phase in the structure LGPS; 3.1.6. Understanding stability at the interfaces between the electrolyte and electrode materials; 3.1.7. Summary; 3.2. Sodium monolithic a#x80;#x9C;all-solid-statea#x80;#x9D; batteries; 3.3. a#x80;#x9C;All-solid-statea#x80;#x9D; Lia#x80;#x93;S batteries; 4. Monolithic a#x80;#x9C;All-Solid-Statea#x80;#x9D; Batteries Using Solid Oxide Electrolytes; 4.1. Silver a#x80;#x9C;all-solid-statea#x80;#x9D; battery technology.
  • 4.2. Li-ion a#x80;#x9C;solid-statea#x80;#x9D; battery technology4.3. Sodum ""solid-state"" battery technology; 4.3.1. Sodium-ion ""solid-state"" battery technology; 4.3.2. Sodium-sulfur a#x80;#x9C;all-solid-statea#x80;#x9D; battery technology; 5. LiBH4 Electrolyte and Polymer Battery Technology; 5.1. a#x80;#x9C;All-solid-statea#x80;#x9D; battery technology: LiBH4 electrolyte; 5.2. a#x80;#x9C;Solid-statea#x80;#x9D; polymer battery technology; 6. Markets; 6.1. Solid electrolytes; 6.1.1. Ohara; 6.1.2. NEI; 6.2. Solid-state batteries; 6.3 Conclusion; Conclusion; Bibliography; Index; Other titles from iSTE in Energy; EULA.