Metrology : from physics fundamentals to quality of life / edited by P. Tavella, M.J.T. Milton and M. Inguscio, directors of the course, and N. De Leo = Metrologia : dalla fisica fondamentale alla qualità della vita / a cura di P. Tavella, M.J.T. Milton e M. Inguscio, direttori del corso, e di N. De Leo.

Saved in:
Bibliographic Details
Corporate Author: International School of Physics "Enrico Fermi" Varenna, Italy
Other Authors: Tavella, P. (Patrizia) (Editor), Milton, M. J. T. (Martin J. T.) (Editor), Inguscio, M. (Editor), De Leo, N. (Natascia) (Editor)
Format: eBook
Language:English
Published: Amsterdam, Netherlands : IOS Press, 2017.
Series:Proceedings of the International School of Physics "Enrico Fermi", Rendiconti della Scuola internationale di fisica "Enrico Fermi" ; course 196 = CXCVI corso
Subjects:
Online Access:Click for online access
Table of Contents:
  • Title Page; CONTENTS; Preface; Course group shot; MODULE I. METROLOGY FOR QUALITY OF LIFE; Reference methods and commutable reference materials for clinical measurements; 1. Introduction; 1.1. Importance of medical tests reliability; 1.2. Role of a national metrology institute in bioanalysis; 1.3. Examples of projects undertaken in LNE (France); 1.4. Regulatory drivers and traceability chains in laboratory medicine; 1.5. JCTLM; 1.6. Accreditation according to ISO 15189; 2. Importance of reference methods in EQAS; 3. Importance of commutability; 3.1. Why commutability matters.
  • 3.2. Principle of commutability assessment; 4. Conclusions and perspectives; Reference measurement systems for biomarkers: Towards biometrology; 1. Introduction; 2. Metabolites and small molecules; 2.1. Kidney disease: creatinine; 2.2. Diabetes mellitus: glucose; 3. Peptides and proteins; 3.1. Absolute quantification of peptides and proteins; 3.2. Diabetes mellitus: HbA1c; 3.3. Sepsis and antimicrobial resistance: Procalcitonine; 3.4. Alzheimer's disease: amyloid beta & tau; 3.5. Iron-related disorders: hepcidin; 4. Lipids and lipoproteins.
  • 4.1. Cardiovascular diseases: cholesterol, triglycerides, LDL-C and HDL-C; 4.2. Lipoprotein particle concentration: beyond LDL-C in CVD risk assessment; 5. Conclusion; SI traceable measurements of the Earth from space to monitor and mitigate against climate change; 1. Introduction; 1.1. Climate; 1.2. Earth Observation data quality; 1.3. Sensor post launch Calibration and Validation (Cal/Val); 1.4. Summary; 2. Key climate parameters; 2.1. Essential Climate Variables (ECV); 2.2. Earth Radiation Budget (ERB); 2.3. Solar variability; 2.3.1. Total Solar Irradiance (TSI).
  • 2.3.2. Solar spectral irradiance (SSI); 2.4. Climate feedbacks; 2.4.1. Introduction; 2.4.2. Cloud feedback on climate; 3. Establishing SI traceability for the Earth observing system; 3.1. Introduction; 3.2. Near simultaneous overpass calibrations (SNO); 3.3. Reference standard calibration test sites; 3.4. Lunar calibration; 3.5. Dominant sources of uncertainty; 3.6. Radiometric accuracy and traceability to SI; 4. Traceable Radiometry Underpinning Terrestrial- and Helio-Studies (TRUTHS): an NMI in space; 4.1. Mission requirements and objectives; 4.2. TRUTHS instrumentation.
  • 4.2.1. Calibration system; 4.3. On-board calibration methods; 4.3.1. Overview; 4.3.2. Step 1: Calibration of TR against CSAR using LDs; 4.3.3. Step 2: HIS (Earth radiance view) calibrated against the TR at each LD wavelength (radiance mode); 4.3.4. Step 3: HIS (Earth radiance view) calibrated at intermediate wavelengths with a lamp; 4.3.5. Step 4: Measurements of the Earth and Sun; 4.3.6. Summary; 5. Conclusions; Amount of substance
  • the Avogadro constant and the SI unit ""mole; 1. Introduction; 2. History; 3. The mole as an SI unit in chemistry; 4. Realization and dissemination.
  • 4.1. Primary standards as reference points.