Hands-On Natural Language Processing with Python : a Practical Guide to Applying Deep Learning Architectures to Your NLP Applications.

This book teaches you to leverage deep learning models in performing various NLP tasks along with showcasing the best practices in dealing with the NLP challenges. The book equips you with practical knowledge to implement deep learning in your linguistic applications using NLTk and Python's pop...

Full description

Saved in:
Bibliographic Details
Main Author: Arumugam, Rajesh
Other Authors: Shanmugamani, Rajalingappaa
Format: eBook
Language:English
Published: Birmingham : Packt Publishing Ltd, 2018.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Mi 4500
001 on1046620120
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|---|||||
008 180804s2018 enk o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d MERUC  |d CHVBK  |d UKMGB  |d LVT  |d UKAHL  |d OCLCQ  |d LOY  |d UX1  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d SXB 
015 |a GBB8E1699  |2 bnb 
016 7 |a 018995547  |2 Uk 
019 |a 1175627192 
020 |a 9781789135916  |q (electronic bk.) 
020 |a 1789135915  |q (electronic bk.) 
020 |a 9781789139495 
020 |a 178913949X  |q (Trade Paper) 
024 3 |a 9781789139495 
035 |a (OCoLC)1046620120  |z (OCoLC)1175627192 
037 |a 9781789135916  |b Packt Publishing 
050 4 |a QA76.73.P98  |b A786 2018eb 
049 |a HCDD 
100 1 |a Arumugam, Rajesh. 
245 1 0 |a Hands-On Natural Language Processing with Python :  |b a Practical Guide to Applying Deep Learning Architectures to Your NLP Applications. 
260 |a Birmingham :  |b Packt Publishing Ltd,  |c 2018. 
300 |a 1 online resource (307 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Cover; Title Page; Copyright and Credits; Packt Upsell; Foreword; Contributors; Table of Contents; Preface; Chapter 1: Getting Started; Basic concepts and terminologies in NLP; Text corpus or corpora; Paragraph; Sentences; Phrases and words; N-grams; Bag-of-words; Applications of NLP; Analyzing sentiment; Recognizing named entities; Linking entities; Translating text; Natural Language Inference; Semantic Role Labeling; Relation extraction; SQL query generation, or semantic parsing; Machine Comprehension; Textual Entailment; Coreference resolution; Searching; Question answering and chatbots 
505 8 |a Converting text-to-voiceConverting voice-to-text; Speaker identification; Spoken dialog systems; Other applications; Summary; Chapter 2: Text Classification and POS Tagging Using NLTK; Installing NLTK and its modules; Text preprocessing and exploratory analysis; Tokenization; Stemming; Removing stop words; Exploratory analysis of text; POS tagging; What is POS tagging?; Applications of POS tagging; Training a POS tagger; Training a sentiment classifier for movie reviews; Training a bag-of-words classifier; Summary; Chapter 3: Deep Learning and TensorFlow; Deep learning; Perceptron 
505 8 |a Activation functionsSigmoid; Hyperbolic tangent; Rectified linear unit ; Neural network; One-hot encoding; Softmax; Cross-entropy; Training neural networks; Backpropagation; Gradient descent; Stochastic gradient descent; Regularization techniques; Dropout; Batch normalization; L1 and L2 normalization; Convolutional Neural Network; Kernel; Max pooling; Recurrent neural network; Long-Short Term Memory; TensorFlow; General Purpose -- Graphics Processing Unit; CUDA; cuDNN; Installation; Hello world!; Adding two numbers; TensorBoard; The Keras library; Summary 
505 8 |a Chapter 4: Semantic Embedding Using Shallow ModelsWord vectors; The classical approach; Word2vec; The CBOW model; The skip-gram model; A comparison of skip-gram and CBOW model architectures; Building a skip-gram model; Visualization of word embeddings; From word to document embeddings; Sentence2vec; Doc2vec; Visualization of document embeddings; Summary; Chapter 5: Text Classification Using LSTM; Data for text classification; Topic modeling ; Topic modeling versus text classification; Deep learning meta architecture for text classification; Embedding layer; Deep representation 
505 8 |a Fully connected partIdentifying spam in YouTube video comments using RNNs; Classifying news articles by topic using a CNN; Transfer learning using GloVe embeddings; Multi-label classification; Binary relevance; Deep learning for multi-label classification; Attention networks for document classification; Summary; Chapter 6: Searching and DeDuplicating Using CNNs; Data; Data description; Training the model; Encoding the text; Modeling with CNN; Training; Inference; Summary; Chapter 7: Named Entity Recognition Using Character LSTM; NER with deep learning; Data; Model; Word embeddings 
500 |a Walking through the code 
520 |a This book teaches you to leverage deep learning models in performing various NLP tasks along with showcasing the best practices in dealing with the NLP challenges. The book equips you with practical knowledge to implement deep learning in your linguistic applications using NLTk and Python's popular deep learning library, TensorFlow. 
630 0 0 |a Natural language processing. 
650 0 |a Python (Computer program language) 
650 7 |a Python (Computer program language)  |2 fast 
650 7 |a Natural language processing (Computer science)  |2 fast 
700 1 |a Shanmugamani, Rajalingappaa. 
776 0 8 |i Print version:  |a Arumugam, Rajesh.  |t Hands-On Natural Language Processing with Python : A Practical Guide to Applying Deep Learning Architectures to Your NLP Applications.  |d Birmingham : Packt Publishing Ltd, ©2018  |z 9781789139495 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=5456142  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD