Summary: | The curvature discussed in this paper is a far reaching generalization of the Riemannian sectional curvature. The authors give a unified definition of curvature which applies to a wide class of geometric structures whose geodesics arise from optimal control problems, including Riemannian, sub-Riemannian, Finsler and sub-Finsler spaces. Special attention is paid to the sub-Riemannian (or Carnot-Carathéodory) metric spaces. The authors' construction of curvature is direct and naive, and similar to the original approach of Riemann. In particular, they extract geometric invariants from the asympto.
|