Geodesics, retracts, and the norm-preserving extension property in the symmetrized bidisc / Jim Agler, Zinaida Lykova, Nicholas Young.

Saved in:
Bibliographic Details
Main Authors: Agler, Jim (Author), Lykova, Z. A. (Zinaida Alexandrovna), 1954- (Author), Young, Nicholas (Author)
Format: eBook
Language:English
Published: Providence, RI : American Mathematical Society, [2019]
Series:Memoirs of the American Mathematical Society ; no. 1242.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1096284441
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
008 190410t20192019riua ob 001 0 eng d
010 |a  2019013165 
040 |a UIU  |b eng  |e rda  |e pn  |c UIU  |d EBLCP  |d OCLCF  |d AU@  |d COD  |d GZM  |d OCLCQ  |d UKAHL  |d OCLCQ  |d VT2  |d K6U  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d S9M  |d SXB  |d OCLCO  |d OCLCQ  |d OCLCO 
019 |a 1101194127  |a 1266291915 
020 |a 9781470450755  |q (ebook) 
020 |a 1470450755  |q (ebook) 
020 |z 9781470435493  |q (alk. paper) 
020 |z 1470435497  |q (alk. paper) 
035 |a (OCoLC)1096284441  |z (OCoLC)1101194127  |z (OCoLC)1266291915 
050 4 |a QA360  |b .A45 2019 
049 |a HCDD 
100 1 |a Agler, Jim,  |e author. 
245 1 0 |a Geodesics, retracts, and the norm-preserving extension property in the symmetrized bidisc /  |c Jim Agler, Zinaida Lykova, Nicholas Young. 
264 1 |a Providence, RI :  |b American Mathematical Society,  |c [2019] 
264 4 |c ©2019 
300 |a 1 online resource (vii, 108 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Memoirs of the American Mathematical Society ;  |v number 1242 
504 |a Includes bibliographical references and index. 
588 0 |a Print version record. 
505 0 |a Cover; Title page; Preface; Chapter 1. Introduction; Chapter 2. An overview; Chapter 3. Extremal problems in the symmetrized bidisc; 3.1. The Carathéodory and Kobayashi extremal problems; 3.2. The Carathéodory extremal problem () for; 3.3. Five types of datum in; 3.4. The Kobayashi extremal problem () for; Chapter 4. Complex geodesics in; 4.1. Complex geodesics and datums in; 4.2. Uniqueness of complex geodesics for each datum in; 4.3. Flat C-geodesics; 4.4. Rational \Ga-inner functions; Chapter 5. The retracts of and the bidisc ²; 5.1. Retracts and geodesics of 
505 8 |a 5.2. Retracts of ²5.3. Geodesics in are varieties; Chapter 6. Purely unbalanced and exceptional datums in; Chapter 7. A geometric classification of geodesics in; Chapter 8. Balanced geodesics in; Chapter 9. Geodesics and sets with the norm-preserving extension property in; 9.1. and ( ); 9.2. and balanced datums; 9.3. and flat or royal datums; Chapter 10. Anomalous sets ℛ∪ with the norm-preserving extension property in; 10.1. Definitions and lemmas; 10.2. The proof of the norm-preserving extension property for \calr∪\cald 
650 0 |a Geometric function theory. 
650 0 |a Functions of complex variables. 
650 0 |a Geometry, Differential. 
650 0 |a Retracts, Theory of. 
650 0 |a Hermitian operators. 
650 7 |a Geometría diferencial  |2 embne 
650 0 7 |a Funciones de variables complejas  |2 embucm 
650 0 7 |a Retractos, Teoría de  |2 embucm 
650 7 |a Functions of complex variables  |2 fast 
650 7 |a Geometric function theory  |2 fast 
650 7 |a Geometry, Differential  |2 fast 
650 7 |a Hermitian operators  |2 fast 
650 7 |a Retracts, Theory of  |2 fast 
700 1 |a Lykova, Z. A.  |q (Zinaida Alexandrovna),  |d 1954-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjMrrGTPJPmhDpWyy4tf4m 
700 1 |a Young, Nicholas,  |e author. 
776 0 8 |i Print version: Agler, Jim.  |t Geodesics, retracts, and the norm-preserving extension property in the symmetrized bidisc.  |d Providence, RI : American Mathematical Society, [2019]  |z 9781470435493  |w (DLC) 2019013165  |w (OCoLC)1079400671 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1242. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=5770288  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD