Hands-on accelerator physics using MATLAB® / Volker Ziemann.

Hands-On Accelerator Physics Using MATLAB provides an introduction into the design and operational issues of a wide range of particle accelerators, from ion-implanters to the Large Hadron Collider at CERN. Many aspects from the design of beam optical systems and magnets, to the subsystems for accele...

Full description

Saved in:
Bibliographic Details
Main Author: Ziemann, Volker (Associate professor of physics) (Author)
Format: eBook
Language:English
Published: Boca Raton, FL : CRC Press, Taylor & Francis Group, [2019]
Subjects:
Online Access:Click for online access
Table of Contents:
  • Cover
  • Half Title
  • Title Page
  • Copyright Page
  • Table of Contents
  • Preface
  • Acknowledgments
  • CHAPTER 1: Introduction and History
  • CHAPTER 2: Reference System
  • 2.1 THE REFERENCE TRAJECTORY
  • 2.2 COORDINATE TRANSFORMATIONS
  • 2.3 PARTICLES AND THEIR DESCRIPTION
  • 2.4 PARTICLE ENSEMBLES, BUNCHES
  • CHAPTER 3: Transverse Beam Optics
  • 3.1 MAGNETS AND MATRICES
  • 3.1.1 Thin quadrupoles
  • 3.1.2 Thick quadrupoles
  • 3.1.3 Sector dipole
  • 3.1.4 Combined function dipole
  • 3.1.5 Rectangular dipole
  • 3.1.6 Coordinate rotation
  • 3.1.7 Solenoid
  • 3.1.8 Non-linear elements
  • 3.2 PROPAGATING PARTICLES AND BEAMS
  • 3.3 TWO-DIMENSIONAL
  • 3.3.1 Beam optics in MATLAB
  • 3.3.2 Poincarè section and tune
  • 3.3.3 FODO cell and beta functions
  • 3.3.4 A complementary look at beta functions
  • 3.3.5 Beam size and emittance
  • 3.4 CHROMATICITY AND DISPERSION
  • 3.4.1 Chromaticity
  • 3.4.2 Dispersion
  • 3.4.3 Emittance generation
  • 3.4.4 Momentum compaction factor
  • 3.5 FOUR-DIMENSIONAL AND COUPLING
  • 3.6 MATCHING
  • 3.6.1 Matching the phase advance
  • 3.6.2 Match beta functions to a waist
  • 3.6.3 Point-to-point focusing
  • 3.7 BEAM-OPTICAL SYSTEMS
  • 3.7.1 Telescopes
  • 3.7.2 Triplets
  • 3.7.3 Doublets
  • 3.7.4 Achromats
  • 3.7.5 Multi-bend achromats
  • 3.7.6 TME cell
  • 3.7.7 Dispersion suppressor
  • 3.7.8 Interaction region
  • 3.7.9 Bunch compressors
  • CHAPTER 4: Magnets
  • 4.1 MAXWELL'S EQUATIONS AND BOUNDARY CONDITIONS
  • 4.2 2D-GEOMETRIES AND MULTIPOLES
  • 4.3 IRON-DOMINATED MAGNETS
  • 4.3.1 Simple analytical methods
  • 4.3.2 Using the MATLAB PDE toolbox
  • 4.3.3 Quadrupoles
  • 4.3.4 Technological aspects
  • 4.4 SUPER-CONDUCTING MAGNETS
  • 4.4.1 Simple analytical methods
  • 4.4.2 PDE toolbox
  • 4.5 PERMANENT MAGNETS
  • 4.5.1 Multipoles
  • 4.5.2 Segmented multipoles
  • 4.5.3 Undulators and wigglers
  • 4.6 MAGNET MEASUREMENTS.
  • 4.6.1 Hall probe
  • 4.6.2 Rotating coil
  • 4.6.3 Undulator measurements
  • CHAPTER 5: Longitudinal Dynamics and Acceleration
  • 5.1 PILL-BOX CAVITY
  • 5.2 TRANSIT-TIME FACTOR
  • 5.3 PHASE STABILITY AND SYNCHROTRON OSCILLATIONS
  • 5.4 LARGE-AMPLITUDE OSCILLATIONS
  • 5.5 RF GYMNASTICS
  • 5.6 ACCELERATION
  • 5.7 A SIMPLE WORKED EXAMPLE
  • CHAPTER 6: Radio-Frequency Systems
  • 6.1 POWER GENERATION AND CONTROL
  • 6.2 POWER TRANSPORT: WAVEGUIDES AND TRANSMISSION LINES
  • 6.3 COUPLERS AND ANTENNAS
  • 6.4 POWER TO THE BEAM: RESONATORS AND CAVITIES
  • 6.4.1 Losses and quality factor Q0 of a pill-box cavity
  • 6.4.2 General cavity geometry with the PDE toolbox
  • 6.4.3 Disk-loaded waveguides
  • 6.5 TECHNOLOGICAL ASPECTS
  • 6.5.1 Normal-conducting
  • 6.5.2 Super-conducting
  • 6.6 INTERACTION WITH THE BEAM
  • 6.6.1 Beam loading
  • 6.6.2 Steady-state operation
  • 6.6.3 Pulsed operation and transient beam loading
  • 6.6.4 Low-level RF system
  • CHAPTER 7: Instrumentation and Diagnostics
  • 7.1 ZEROTH MOMENT: CURRENT
  • 7.2 FIRST MOMENT: BEAM POSITION AND ARRIVAL TIME
  • 7.3 SECOND MOMENT: BEAM SIZE
  • 7.4 EMITTANCE AND BETA FUNCTIONS
  • 7.5 SPECIALTY DIAGNOSTICS
  • 7.5.1 Turn-by-turn position monitor data analysis
  • 7.5.2 Beam-beam diagnostics
  • 7.5.3 Schottky diagnostics
  • CHAPTER 8: Imperfections and Their Correction
  • 8.1 SOURCES OF IMPERFECTIONS
  • 8.1.1 Misalignment and feed down
  • 8.1.2 Tilted components
  • 8.1.3 Rolled elements and solenoids
  • 8.1.4 Chromatic effects
  • 8.1.5 Consequences
  • 8.2 IMPERFECTIONS IN BEAM LINES
  • 8.2.1 Dipole kicks and orbit errors
  • 8.2.2 Quadrupolar errors and beam size
  • 8.2.3 Skew-quadrupolar perturbations
  • 8.2.4 Filamentation
  • 8.3 IMPERFECTIONS IN A RING
  • 8.3.1 Misalignment and dipole kicks
  • 8.3.2 Gradient imperfections
  • 8.3.3 Skew-gradient imperfections
  • 8.4 CORRECTION IN BEAM LINES.
  • 8.4.1 Trajectory knobs and bumps
  • 8.4.2 Orbit correction
  • 8.4.3 Beta matching
  • 8.4.4 Dispersion and chromaticity
  • 8.5 CORRECTION IN RINGS
  • 8.5.1 Orbit correction
  • 8.5.2 Dispersion-free steering
  • 8.5.3 Tune correction
  • 8.5.4 Chromaticity correction
  • 8.5.5 Coupling correction
  • 8.5.6 Orbit response-matrix based methods
  • 8.5.7 Feedback systems
  • CHAPTER 9: Targets and Luminosity
  • 9.1 EVENT RATE AND LUMINOSITY
  • 9.2 ENERGY LOSS AND STRAGGLING
  • 9.3 TRANSVERSE SCATTERING, EMITTANCE GROWTH, AND LIFE-TIME
  • 9.4 COLLIDING BEAMS
  • 9.5 BEAM-BEAM LUMINOSITY
  • 9.6 INCOHERENT BEAM-BEAM TUNE SHIFT
  • 9.7 COHERENT BEAM-BEAM INTERACTIONS
  • 9.8 LINEAR COLLIDERS
  • CHAPTER 10: Synchrotron Radiation and Free-Electron Lasers
  • 10.1 EFFECT ON THE BEAM
  • 10.1.1 Longitudinally
  • 10.1.2 Vertically
  • 10.1.3 Horizontally
  • 10.1.4 Quantum lifetime
  • 10.2 CHARACTERISTICS OF THE EMITTED RADIATION
  • 10.2.1 Dipole magnets
  • 10.2.2 Undulators and wigglers
  • 10.3 SMALL-GAIN FREE-ELECTRON LASER
  • 10.3.1 Amplifier and oscillator
  • 10.4 SELF-AMPLIFIED SPONTANEOUS EMISSION
  • 10.5 ACCELERATOR CHALLENGES
  • CHAPTER 11: Non-linear Dynamics
  • 11.1 A ONE-DIMENSIONAL TOY MODEL
  • 11.2 TRACKING AND DYNAMIC APERTURE
  • 11.3 HAMILTONIANS AND LIE-MAPS
  • 11.3.1 Moving Hamiltonians
  • 11.3.2 Concatenating Hamiltonians
  • 11.4 IMPLEMENTATION IN MATLAB
  • 11.5 TWO-DIMENSIONAL MODEL
  • 11.6 KNOBS AND RESONANCE-DRIVING TERMS
  • 11.7 NON-RESONANT NORMAL FORMS
  • CHAPTER 12: Collective Effects
  • 12.1 SPACE CHARGE
  • 12.2 INTRABEAM SCATTERING AND TOUSCHEK-EFFECT
  • 12.3 WAKE FIELDS, IMPEDANCES, AND LOSS FACTORS
  • 12.4 COASTING-BEAM INSTABILITY
  • 12.5 SINGLE-BUNCH INSTABILITIES
  • 12.6 MULTI-BUNCH INSTABILITIES
  • CHAPTER 13: Accelerator Subsystems
  • 13.1 CONTROL SYSTEM
  • 13.1.1 Sensors, actuators, and interfaces
  • 13.1.2 System architecture.
  • 13.1.3 Timing system
  • 13.1.4 An example: EPICS
  • 13.2 PARTICLE SOURCES
  • 13.2.1 Electrons
  • 13.2.2 Protons and other ions
  • 13.2.3 Highly charged ions
  • 13.2.4 Negatively charged ions
  • 13.2.5 Radio-frequency quadrupole
  • 13.3 INJECTION AND EXTRACTION
  • 13.4 BEAM COOLING
  • 13.5 VACUUM
  • 13.5.1 Vacuum basics
  • 13.5.2 Pumps and gauges
  • 13.5.3 Vacuum calculations
  • 13.6 CRYOGENICS
  • 13.7 RADIATION PROTECTION AND SAFETY
  • 13.7.1 Units
  • 13.7.2 Range of radiation in matter
  • 13.7.3 Dose measurements
  • 13.7.4 Personnel and machine protection
  • 13.8 CONVENTIONAL FACILITIES
  • 13.8.1 Electricity
  • 13.8.2 Water and cooling
  • 13.8.3 Buildings and shielding
  • CHAPTER 14: Examples of Accelerators
  • 14.1 CERN AND THE LARGE HADRON COLLIDER
  • 14.2 EUROPEAN SPALLATION SOURCE
  • 14.3 SLAC AND THE LINAC COHERENT LIGHT SOURCE
  • 14.4 MAX-IV
  • 14.5 TANDEM ACCELERATOR IN UPPSALA
  • 14.6 ACCELERATORS FOR MEDICAL APPLICATIONS
  • 14.7 INDUSTRIAL ACCELERATORS
  • APPENDIX A: The Student Labs
  • A.1 BEAM PROFILE OF LASER POINTER
  • A.2 EMITTANCE MEASUREMENT WITH A LASER POINTER
  • A.3 HALBACH MULTIPOLES AND UNDULATORS
  • A.4 MAGNET MEASUREMENTS
  • A.5 COOKIE-JAR CAVITY ON A NETWORK ANALYZER
  • APPENDIX B: Appendices Available Online
  • B.1 LINEAR ALGEBRA
  • B.2 MATLAB PRIMER
  • B.3 OPENSCAD PRIMER
  • B.4 LIGHT OPTICS, RAYS, AND GAUSSIAN
  • B.5 MATLAB FUNCTIONS
  • Bibliography
  • Index.