Optimization and inventory management / Nita H. Shah, Mandeep Mittal, editors.

This book discusses inventory models for determining optimal ordering policies using various optimization techniques, genetic algorithms, and data mining concepts. It also provides sensitivity analyses for the models' robustness. It presents a collection of mathematical models that deal with re...

Full description

Saved in:
Bibliographic Details
Other Authors: Shah, Nita H. (Editor), Mittal, Mandeep, 1978- (Editor)
Format: eBook
Language:English
Published: Singapore : Springer, [2020]
Series:Asset analytics.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1119730874
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu|||unuuu
008 190918t20202020si a o 000 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d UKMGB  |d OCLCF  |d UPM  |d LEATE  |d N$T  |d YDX  |d VT2  |d OCLCO  |d OCLCQ  |d OCLCO  |d GUA  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
015 |a GBB9G0593  |2 bnb 
016 7 |a 019535785  |2 Uk 
019 |a 1126185869  |a 1136266210  |a 1140380613  |a 1150156435  |a 1156393989  |a 1160265792  |a 1162783084  |a 1203985099 
020 |a 9789811396984  |q (electronic bk.) 
020 |a 9811396981  |q (electronic bk.) 
020 |z 9811396973 
020 |z 9789811396977 
020 |z 9789811396991  |q (print) 
020 |z 981139699X  |q (print) 
020 |z 9789811397004  |q (print) 
020 |z 9811397007  |q (print) 
024 7 |a 10.1007/978-981-13-9698-4  |2 doi 
035 |a (OCoLC)1119730874  |z (OCoLC)1126185869  |z (OCoLC)1136266210  |z (OCoLC)1140380613  |z (OCoLC)1150156435  |z (OCoLC)1156393989  |z (OCoLC)1160265792  |z (OCoLC)1162783084  |z (OCoLC)1203985099 
037 |a com.springer.onix.9789811396984  |b Springer Nature 
050 4 |a TS160  |b .O68 2020eb 
072 7 |a KJT  |2 bicssc 
072 7 |a BUS049000  |2 bisacsh 
072 7 |a KJT  |2 thema 
072 7 |a KJMD  |2 thema 
049 |a HCDD 
245 0 0 |a Optimization and inventory management /  |c Nita H. Shah, Mandeep Mittal, editors. 
264 1 |a Singapore :  |b Springer,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Asset analytics : performance and safety management,  |x 2522-5162 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed September 18, 2019). 
505 0 |a Section 1: Inventory models with trade credit financing for imperfect quality items.- Chapter 1. An economic production quantity (EPQ) inventory model for deteriorating item under two-level trade credit policy with allowable shortages.- Chapter 2. Deteriorating imperfect produce inventory for time dependent demand under Radio frequency Identification adoption with preservation and trade credit.- Chapter 3. EOQ Model Under Discounted Partial Advance -- Partial Trade Credit Policy with Price Dependent Demand.- Chapter 4. Stock Dependent Inventory Model for Imperfect Items under Permissible Delay in Payments.- Chapter 5. A Discrete-in-Time inventory model under Stockout based Substitution.- Chapter 6. An economic order quantity inventory model with shortage considering wastage uncertainty for Fish/pig/poultry farmers.- Chapter 7. Retailer's replenishment policies under two level trade credit policy with defective items in a supply chain model when demand depends on both selling price and credit period.- Chapter 8. Effects of pre and post deterioration price discounts on selling price in formulation of an ordering policy for an inventory system: A study.- Chapter 9. An Inventory Control Policy for Time Dependent Perishable Item with Variable Demand under Two Levels Order Linked Trade Credit.- Chapter 10. Inventory policies for fixed life products having time and price sensitive demand under promotion efforts with advance payments option.- Chapter 11. An inventory model of deteriorating items for stock dependent demand with time varying holding cost and random decay start time.- Section 2: Environmental impact on the ordering policies.- Chapter 12. Inventory Models with Environmental Consideration for Imperfect Quality Items.- Chapter 13. Effect of carbon footprints during transportation in a supply chain model under inflation.- Chapter 14. Emission Effect on Supply Chain for Imperfect Quality Items under Trade Credit Policy.- Section 3: Impact of learning on the supply chain models.- Chapter 15. Efficient supplier's selection: one way to inventory control.- Chapter 16. An Application of Genetic Algorithm for Order Allocation amongst Suppliers.- Chapter 17. Effect of Manufacturer's Innovation and Retailer's Promotion under Centralized and Decentralized Options.- Chapter 18. Optimal ordering policy of substitutable products for supermarket under joint replenishment Inventory control.- Chapter 19. An efficient -- hybrid optimization approach for Closed -- loop supply chain under randomness.- Section 4: EOQ models considering warehousing.- Chapter 20. Asymmetric supply chain model with imperfect items and variable demand: A Control Theoretic Approach.- Chapter 21. Effect of learning on optimal policies of supply chain partners for imperfect quality items: Game theoretic approach.- Chapter 22. A Production Reliable Model for Imperfect Items with Random Machine Breakdown under Learning and Forgetting.- Section 4: EOQ models considering warehousing.- Chapter 23. A marketing decision oriented two warehouses inventory system under displayed stock level dependent consumption rate.- Chapter 24. Credit Financing in Two Warehouse Environment For Defective Items with Allowable Shortages.- Chapter 25. Two-warehouse inventory model with quantity discount policy.- Section 5: Optimal Ordering policies with datamining and PSO techniques.- Chapter 26. Decision Making with Temporal Association Rule Mining and Clustering in Supply Chains.- Chapter 27. A Nature Inspired Computational Method to Optimise Solutions to a Problem by Refining Candidate Solutions using Particle Swarm Optimisation.- Section 6: Supply chain models in fuzzy environment.- Chapter 28. A Fuzzy Two-Echelon Supply Chain model for deteriorating items with time varying holding cost involving lead time as a decision variable.- Chapter 29. A Soft-Computing Approach on inventory model for deteriorating items with Genetic algorithm in Fuzzy Environment.- Section 7: Optimal production models for multi-items and multi-retailer.- Chapter 30. Optimal production-inventory policies for processed fruit juices manufacturer and multi-retailers with trended demand and quality degradation.- Chapter 31. Multi-Product Optimization of Supply Chain using Multi-Objective Genetic Algorithm.- Section 8: Marketing model to understand buying behaviour.- Chapter 32. Interpretive Structural Modelling to understand factors influencing buying behaviour of Air-Freshener. 
520 |a This book discusses inventory models for determining optimal ordering policies using various optimization techniques, genetic algorithms, and data mining concepts. It also provides sensitivity analyses for the models' robustness. It presents a collection of mathematical models that deal with real industry scenarios. All mathematical model solutions are provided with the help of various optimization techniques to determine optimal ordering policy. The book offers a range of perspectives on the implementation of optimization techniques, inflation, trade credit financing, fuzzy systems, human error, learning in production, inspection, green supply chains, closed supply chains, reworks, game theory approaches, genetic algorithms, and data mining, as well as research on big data applications for inventory management and control. Starting from deterministic inventory models, the book moves towards advanced inventory models. The content is divided into eight major sections: inventory control and management - inventory models with trade credit financing for imperfect quality items; environmental impact on ordering policies; impact of learning on the supply chain models; EOQ models considering warehousing; optimal ordering policies with data mining and PSO techniques; supply chain models in fuzzy environments; optimal production models for multi-items and multi-retailers; and a marketing model to understand buying behaviour. Given its scope, the book offers a valuable resource for practitioners, instructors, students and researchers alike. It also offers essential insights to help retailers/managers improve business functions and make more accurate and realistic decisions. 
650 0 |a Inventory control  |x Mathematical models. 
650 0 |a Mathematical optimization. 
650 7 |a Inventory control  |x Mathematical models  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
700 1 |a Shah, Nita H.,  |e editor. 
700 1 |a Mittal, Mandeep,  |d 1978-  |e editor.  |1 https://id.oclc.org/worldcat/entity/E39PCjJ76GDj8xx4pmgv7rdxpd 
776 0 8 |i Print version:  |z 9789811396977 
776 0 8 |i Print version:  |z 9789811396991 
776 0 8 |i Print version:  |z 9789811397004 
830 0 |a Asset analytics. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-981-13-9698-4  |y Click for online access 
903 |a SPRING-BUS2020 
994 |a 92  |b HCD