Mathematical foundations of system safety engineering : a road map for the future / Richard R. Zito.

This graduate-level textbook elucidates low-risk and fail-safe systems in mathematical detail. It addresses, in particular, problems where mission-critical performance is paramount, such as in aircraft, missiles, nuclear reactors and weapons, submarines, and many other types of systems where "f...

Full description

Saved in:
Bibliographic Details
Main Author: Zito, Richard R. (Author)
Format: eBook
Language:English
Published: Cham : Springer, [2020]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1128097532
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu|||unuuu
008 191120s2020 sz a ob 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d UKMGB  |d ESU  |d AU@  |d SFB  |d VLB  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCL  |d OCLCQ 
015 |a GBB9J3299  |2 bnb 
016 7 |a 019613512  |2 Uk 
019 |a 1130760161  |a 1155993753 
020 |a 9783030262419  |q (electronic bk.) 
020 |a 3030262413  |q (electronic bk.) 
020 |z 9783030262402 
024 7 |a 10.1007/978-3-030-26241-9  |2 doi 
035 |a (OCoLC)1128097532  |z (OCoLC)1130760161  |z (OCoLC)1155993753 
037 |a com.springer.onix.9783030262419  |b Springer Nature 
050 4 |a TA169.7  |b .Z58 2020eb 
072 7 |a TGPR  |2 bicssc 
072 7 |a TEC032000  |2 bisacsh 
072 7 |a TGPR  |2 thema 
049 |a HCDD 
100 1 |a Zito, Richard R.,  |e author. 
245 1 0 |a Mathematical foundations of system safety engineering :  |b a road map for the future /  |c Richard R. Zito. 
264 1 |a Cham :  |b Springer,  |c [2020] 
264 4 |c ©2020 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed November 20, 2019). 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction -- Decomposition of the Failure Histogram -- Bounding the "Black Swan" Probability -- The Risk Surface -- The Bent Pin Problem-I: Computer Search Methods -- The Bent Pin Problem-II: Matrix Methods -- The Bent Pin Problem-III: Number Theory Methods -- The Bent Pin Problem-IV: Limit Methods -- The Bent Pin Problem-V: Experimental Methods -- "Sneak Circuits" and Related System Safety Electrical Problems-I: Matrix Methods -- "Sneak Circuits" and Related System Safety Electrical Problems-II: Computer Search -- Methods -- Predicting Software Performance -- Alternative Flowcharts for a Mathematical Analysis of Logic -- Fail-Safe Control Software -- Design Phase Elimination of Beryllium -- Accelerated Age Testing of Explosives and Propellants -- The Movement of Inorganic Cadmium Through the Environment -- Epilogue -- GLOSSARY -- APPENDIX A "Long Tailed" Distribution -- APPENDIX B -- APPENDIX C -- APPENDIX D -- APPENDIX E -- APPENDIX F -- APPENDIX G -- APPENDIX H -- INDEX. 
520 |a This graduate-level textbook elucidates low-risk and fail-safe systems in mathematical detail. It addresses, in particular, problems where mission-critical performance is paramount, such as in aircraft, missiles, nuclear reactors and weapons, submarines, and many other types of systems where "failure" can result in overwhelming loss of life and property. The book is divided into four parts: Fundamentals, Electronics, Software, and Dangerous Goods. The first part on Fundamentals addresses general concepts of system safety engineering that are applicable to any type of system. The second part, Electronics, addresses the detection and correction of electronic hazards. In particular, the Bent Pin Problem, Sneak Circuit Problem, and related electrical problems are discussed with mathematical precision. The third part on Software addresses predicting software failure rates as well as detecting and correcting deep software logical flaws (called defects). The fourth part on Dangerous Goods presents solutions to three typical industrial chemical problems faced by the system safety engineer during the design, storage, and disposal phases of a dangerous goods' life cycle. Explains systematic mathematical procedures for detecting and correcting latent system flaws; Positions system safety engineering (SSE) as an early design-phase function rather than an afterthought; Treats the SSE process as a science rather than an art; Reinforces concepts presented with end-of-chapter problems; Introduces a perspective of "certainty" to SSE 
650 0 |a System safety  |x Mathematics. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-26241-9  |y Click for online access 
903 |a SPRING-ENGINE2020 
994 |a 92  |b HCD