Automated software engineering : a deep learning based approach / Suresh Chandra Satapathy, Ajay Kumar Jena, Jagannath Singh, Saurabh Bilgaiyan.

This book discusses various open issues in software engineering, such as the efficiency of automated testing techniques, predictions for cost estimation, data processing, and automatic code generation. Many traditional techniques are available for addressing these problems. But, with the rapid chang...

Full description

Saved in:
Bibliographic Details
Main Author: Satapathy, Suresh Chandra, 1964-
Other Authors: Jena, Ajay Kumar, Singh, Jagannath, Bilgaiyan, Saurabh
Format: eBook
Language:English
Published: Cham : Springer, 2020.
Series:Learning and analytics in intelligent systems ; v. 8.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1136164994
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
008 200118s2020 sz ob 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d OCLCF  |d LQU  |d LEATE  |d ESU  |d VT2  |d UKMGB  |d UKAHL  |d N$T  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBC066781  |2 bnb 
016 7 |a 019671632  |2 Uk 
019 |a 1137843459  |a 1156340932 
020 |a 9783030380069  |q (electronic bk.) 
020 |a 3030380068  |q (electronic bk.) 
020 |a 9783030380076  |q (print) 
020 |a 3030380076 
020 |a 9783030380083  |q (print) 
020 |a 3030380084 
020 |z 9783030380052 
020 |z 303038005X 
024 7 |a 10.1007/978-3-030-38006-9  |2 doi 
024 8 |a 10.1007/978-3-030-38 
035 |a (OCoLC)1136164994  |z (OCoLC)1137843459  |z (OCoLC)1156340932 
037 |a com.springer.onix.9783030380069  |b Springer Nature 
050 4 |a QA76.758 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
049 |a HCDD 
100 1 |a Satapathy, Suresh Chandra,  |d 1964-  |1 https://id.oclc.org/worldcat/entity/E39PBJccbf9cPXHMjkMvrWBtrq 
245 1 0 |a Automated software engineering :  |b a deep learning based approach /  |c Suresh Chandra Satapathy, Ajay Kumar Jena, Jagannath Singh, Saurabh Bilgaiyan. 
260 |a Cham :  |b Springer,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Learning and analytics in intelligent systems ;  |v v. 8 
504 |a Includes bibliographical references. 
505 0 |a Chapter 1: Selection of Significant Metrics for Improving the Performance of Change-Proneness Modules -- Chapter 2: Effort Estimation of Web based Applications using ERD, use Case Point Method and Machine Learning -- Chapter 3: Usage of Machine Learning in Software Testing -- Chapter 4: Test Scenarios Generation using Combined Object-Oriented Models -- Chapter 5: A Novel Approach of Software Fault Prediction using Deep Learning Technique -- Chapter 6: Feature-Based Semi-Supervised Learning to Detect Malware from Android. 
520 |a This book discusses various open issues in software engineering, such as the efficiency of automated testing techniques, predictions for cost estimation, data processing, and automatic code generation. Many traditional techniques are available for addressing these problems. But, with the rapid changes in software development, they often prove to be outdated or incapable of handling the softwares complexity. Hence, many previously used methods are proving insufficient to solve the problems now arising in software development. The book highlights a number of unique problems and effective solutions that reflect the state-of-the-art in software engineering. Deep learning is the latest computing technique, and is now gaining popularity in various fields of software engineering. This book explores new trends and experiments that have yielded promising solutions to current challenges in software engineering. As such, it offers a valuable reference guide for a broad audience including systems analysts, software engineers, researchers, graduate students and professors engaged in teaching software engineering. 
650 0 |a Software engineering. 
650 0 |a Machine learning. 
650 7 |a Machine learning  |2 fast 
650 7 |a Software engineering  |2 fast 
700 1 |a Jena, Ajay Kumar. 
700 1 |a Singh, Jagannath. 
700 1 |a Bilgaiyan, Saurabh. 
758 |i has work:  |a Automated software engineering (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGy3CXK44Qxj7jbwcGmFfC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 303038005X  |z 9783030380052  |w (OCoLC)1128889555 
830 0 |a Learning and analytics in intelligent systems ;  |v v. 8. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-38006-9  |y Click for online access 
903 |a SPRING-ROBOTICS2020 
994 |a 92  |b HCD