Scalable data analysis in Python with Dask / Mohammed Kashif.

"In this course, you'll learn to scale your data analysis. Firstly, you will execute distributed data science projects right from data ingestion to data manipulation and visualization using Dask. Then, you will explore the Dask framework. After, see how Dask can be used with other common P...

Full description

Saved in:
Bibliographic Details
Other Authors: Kashif, Mohammed (Speaker)
Format: Video
Language:English
Published: [Place of publication not identified] : Packt, [2019]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cgm a2200000 i 4500
001 on1138949915
003 OCoLC
005 20241120213016.0
006 m o c
007 cr cna||||||||
007 vz czazuu
008 200204s2019 xx 222 o vleng d
040 |a UMI  |b eng  |e rda  |e pn  |c UMI  |d OCLCF  |d ALSTP  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d CJT 
019 |a 1373549925 
035 |a (OCoLC)1138949915  |z (OCoLC)1373549925 
037 |a CL0501000093  |b Safari Books Online 
050 4 |a QA76.73.P98 
049 |a HCDD 
100 1 |a Kashif, Mohammed,  |e speaker. 
245 1 0 |a Scalable data analysis in Python with Dask /  |c Mohammed Kashif. 
264 1 |a [Place of publication not identified] :  |b Packt,  |c [2019] 
300 |a 1 online resource (1 streaming video file (3 hr., 41 min., 52 sec.)) 
306 |a 034153 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file  |2 rda 
511 0 |a Presenter, Mohammed Kashif. 
500 |a Title from title screen (viewed January 31, 2020). 
500 |a Date of publication from resource description page. 
520 |a "In this course, you'll learn to scale your data analysis. Firstly, you will execute distributed data science projects right from data ingestion to data manipulation and visualization using Dask. Then, you will explore the Dask framework. After, see how Dask can be used with other common Python tools such as NumPy, pandas, Matplotlib, scikit-learn, and more. You'll be working on large datasets and performing exploratory data analysis to investigate the dataset, then come up with the findings from the dataset. You'll learn by implementing data analysis principles using different statistical techniques in one go across different systems on the same massive datasets. Throughout the course, we'll go over the various techniques, modules, and features that Dask has to offer. Finally, you'll learn to use its unique offering for Machine Learning, using the Dask-ML package. You'll also start using parallel processing in your data tasks on your own system without moving to the distributed environment."--Resource description page 
546 |a In English. 
650 0 |a Python (Computer program language) 
650 0 |a Data mining. 
650 0 |a Electronic data processing  |x Distributed processing. 
650 0 |a Information visualization. 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Electronic data processing  |x Distributed processing.  |2 fast  |0 (OCoLC)fst00906987 
650 7 |a Information visualization.  |2 fast  |0 (OCoLC)fst00973185 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
655 7 |a Instructional films.  |2 fast  |0 (OCoLC)fst01726236 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Films de formation.  |2 rvmgf 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://www.aspresolver.com/aspresolver.asp?MARC;4740648  |y Click for online access 
903 |a ASP-AV 
994 |a 92  |b HCD