Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications / K.G. Srinivasa, G.M. Siddesh, S.R. Manisekhar, editors.

This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics. It also highlights the role of computing and machine learning in knowledge extraction from biological data, and how this knowledge can be applied...

Full description

Saved in:
Bibliographic Details
Other Authors: Srinivasa, K. G. (Editor), Siddesh, G. M., 1981- (Editor), Manisekhar, S. R. (Editor)
Format: eBook
Language:English
Published: Singapore : Springer, 2020.
Series:Algorithms for intelligent systems.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1139896755
003 OCoLC
005 20241006213017.0
006 m o d
007 cr un|---aucuu
008 200208s2020 si c o 000 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d GW5XE  |d EBLCP  |d LQU  |d OCLCF  |d OCLCQ  |d N$T  |d CPO  |d VT2  |d SRU  |d UKAHL  |d UKMGB  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
015 |a GBC067087  |2 bnb 
016 7 |a 019706097  |2 Uk 
019 |a 1156366618  |a 1162692246  |a 1203985398  |a 1204057969 
020 |a 9789811524455  |q (electronic bk.) 
020 |a 9811524459  |q (electronic bk.) 
020 |a 9811524440 
020 |a 9789811524448 
020 |a 9789811524462  |q (print) 
020 |a 9811524467 
020 |a 9789811524479  |q (print) 
020 |a 9811524475 
020 |z 9789811524448  |q (print) 
024 7 |a 10.1007/978-981-15-2445-5  |2 doi 
035 |a (OCoLC)1139896755  |z (OCoLC)1156366618  |z (OCoLC)1162692246  |z (OCoLC)1203985398  |z (OCoLC)1204057969 
037 |a com.springer.onix.9789811524455  |b Springer Nature 
050 4 |a QH324.2 
072 7 |a UYQ  |2 bicssc 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
049 |a HCDD 
245 0 0 |a Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications /  |c K.G. Srinivasa, G.M. Siddesh, S.R. Manisekhar, editors. 
264 1 |a Singapore :  |b Springer,  |c 2020. 
300 |a 1 online resource (318 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Algorithms for Intelligent Systems 
588 0 |a Print version record. 
505 0 |a Part 1: Bioinformatics -- Chapter 1. Introduction to Bioinformatics -- Chapter 2. Review about Bioinformatics, Databases, Sequence Alignment, Docking and Drug Discovery -- Chapter 3. Machine Learning for Bioinformatics -- Chapter 4. Impact of Machine Learning in Bioinformatics Research.-Chapter 5. Text-mining in Bioinformatics -- Chapter 6. Open Source Software Tools for Bioinformatics -- Part 2: Protein Structure Prediction and Gene Expression Analysis -- Chapter 7. A Study on Protein Structure Prediction -- Chapter 8. Computational Methods Used in Prediction of Protein Structure -- Chapter 9. Computational Methods for Inference of Gene Regulatory Networks from Gene Expression Data -- Chapter 10. Machine Learning Algorithms for Feature Selection from Gene Expression Data -- Part 3: Genomics and Proteomics -- Chapter 11. Unsupervised Techniques in Genomics -- Chapter 12. Supervised Techniques in Proteomics -- Chapter 13. Visualizing Codon Usage Within and Across Genomes: Concepts and Tools -- Chapter 14. Single-Cell Multiomics: Dissecting Cancer. 
520 |a This book discusses topics related to bioinformatics, statistics, and machine learning, presenting the latest research in various areas of bioinformatics. It also highlights the role of computing and machine learning in knowledge extraction from biological data, and how this knowledge can be applied in fields such as drug design, health supplements, gene therapy, proteomics and agriculture. 
650 0 |a Computational biology. 
650 0 |a Bioinformatics. 
650 0 |a Machine learning. 
650 7 |a Bioinformatics  |2 fast 
650 7 |a Computational biology  |2 fast 
650 7 |a Machine learning  |2 fast 
700 1 |a Srinivasa, K. G.,  |e editor. 
700 1 |a Siddesh, G. M.,  |d 1981-  |e editor.  |1 https://id.oclc.org/worldcat/entity/E39PCjG4kCjQpGHFkbThmtFmbb 
700 1 |a Manisekhar, S. R.,  |e editor. 
758 |i has work:  |a Statistical modelling and machine learning principles for bioinformatics techniques, tools, and applications (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGVjrdKWGpd9kfPVXVkMT3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Srinivasa, K.G.  |t Statistical Modelling and Machine Learning Principles for Bioinformatics Techniques, Tools, and Applications.  |d Singapore : Springer, ©2020  |z 9789811524448 
830 0 |a Algorithms for intelligent systems. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-981-15-2445-5  |y Click for online access 
903 |a SPRING-ROBOTICS2020 
994 |a 92  |b HCD