Principles of biomedical engineering / Sundararajan V. Madihally.

"This updated and expanded second edition of an Artech House classic introduces readers to the importance of engineering in medicine. Transport of molecules, bioelectrical phenomena, principles of mass, momentum, and energy transport to the analysis of fluids and solids, biomechanical analysis,...

Full description

Saved in:
Bibliographic Details
Main Author: Madihally, Sundararajan V. (Author)
Format: eBook
Language:English
Published: Norwood, MA : Artech House, [2020]
Edition:Second edition
Series:Artech House engineering in medicine & biology series.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Intro
  • Principles of Biomedical Engineering Second Edition
  • Contents
  • CHAPTER 1 Introduction
  • 1.1 Overview
  • 1.2 Roles of Bioengineers
  • 1.3 History of Bioengineering
  • 1.3.1 Development of Biomedical Imaging
  • 1.3.2 Development of Dialysis
  • 1.3.3 The Development of the Heart-Lung Machine
  • 1.3.4 Other Devices
  • 1.4 Sources for Information
  • Problems
  • Selected Bibliography
  • CHAPTER 2 Biotransport
  • 2.1 Overview
  • 2.2 Fundamental Factors
  • 2.2.1 Liquid Compartments
  • 2.2.2 Solute Components
  • 2.2.3 Components in the Gas Phase
  • 2.2.4 Importance of pH
  • 2.3 Diffusion-Mediated Transport
  • 2.3.1 Free Diffusion
  • 2.3.2 Facilitated Diffusion
  • 2.3.3 Active Transport
  • 2.4 Osmosis-Driven Transport
  • 2.4.1 Osmolarity
  • 2.4.2 Tonicity
  • 2.4.3 Osmotic Pressure
  • 2.5 Combined Osmosis and Pressure Gradient-Driven Transport
  • 2.6 Transport of Macromolecules
  • Problems
  • References
  • CHAPTER 3 Bioelectrical Phenomena
  • 3.1 Overview
  • 3.2 Membrane Potential
  • 3.2.1 Nernst Equation
  • 3.2.2 Donnan Equilibrium
  • 3.2.3 Goldman Equation
  • 3.3 Electrical Equivalent Circuit
  • 3.3.1 Cell Membrane Conductance
  • 3.3.2 Cell Membrane as a Capacitor
  • 3.3.3 Resistance-Capacitance Circuit
  • 3.3.4 Action Potential
  • 3.4 Principles of Bioelectrodes
  • 3.4.1 Electrode-Electrolyte Interface
  • 3.4.2 Potential Monitoring Electrodes
  • 3.4.3 Amperometric Devices
  • 3.4.4 Intracellular Recording of Bioelectricity
  • 3.5 Volume Conductors
  • 3.5.1 Electric Field
  • 3.5.2 Electrical Potential Energy
  • 3.5.3 Conservation of Charge
  • 3.5.4 Measuring Electrical Activity of Tissues: Example of Electrocardiogram
  • 3.5.5 Biopotential Recording Practicalities
  • Problems
  • References
  • Selected Bibliography
  • CHAPTER 4 Biofluid Flow
  • 4.1 Overview
  • 4.2 Fluid Flow Characteristics
  • 4.2.1 Conservation of Mass
  • 4.2.2 Inertial and Viscous Forces
  • 4.2.3 Conservation of Momentum
  • 4.3 Nonidealities in Biological Systems
  • 4.3.1 Oscillatory and Pulsating Flows
  • 4.3.2 Alterations in Viscosity
  • 4.3.3 Fluid Flow in Microelectromechanical Systems (MEMS)
  • 4.4 Conservation of Energy
  • 4.4.1 Different Energy Forms
  • 4.4.2 Energy Balance in the Body
  • 4.4.3 Energy Expenditure Calculations
  • 4.5 Fluid Power
  • 4.5.1 Power Calculations in a Cardiac Cycle
  • 4.5.2 The Efficiency of a Pump
  • 4.5.3 Pumps in Series and Parallel
  • 4.6 Optimization Principle for Fluid Transport
  • 4.6.1 Minimum Work of Circulation
  • Problems
  • References
  • Selected Bibliography
  • CHAPTER 5 Biomechanics
  • 5.1 Overview
  • 5.2 Conservation of Momentum in Solids
  • 5.2.1 Different Forces Acting on the Body
  • 5.2.2 Angular Motion
  • 5.2.3 Impulse-Momentum Relation
  • 5.2.4 Gait Analysis (Motion Analysis)
  • 5.3 Ideal Stress-Strain Characteristics
  • 5.3.1 Structural Parameters and Material Parameters
  • 5.3.2 Axial Stress and Strain
  • 5.3.3 Shear Stress
  • 5.3.4 Bending
  • 5.3.5 Torsion
  • 5.4 Nonidealities in Stress-Strain Characterization