Data-driven modeling of cyber-physical systems using side-channel analysis / Sujit Rokka Chhetri, Mohammad Abdullah Al Faruque.

This book provides a new perspective on modeling cyber-physical systems (CPS), using a data-driven approach. The authors cover the use of state-of-the-art machine learning and artificial intelligence algorithms for modeling various aspect of the CPS. This book provides insight on how a data-driven m...

Full description

Saved in:
Bibliographic Details
Main Author: Rokka Chhetri, Sujit
Other Authors: Al Faruque, Mohammad Abdullah
Format: eBook
Language:English
Published: Cham : Springer, 2020.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Intro
  • Preface
  • Acknowledgments
  • Contents
  • 1 Introduction
  • 1.1 Cyber-Physical System
  • 1.2 Data-Driven Modeling
  • 1.3 Side-Channel Analysis
  • 1.4 Book Sections
  • 1.4.1 Part I: Data-Driven Attack Modeling
  • 1.4.2 Part II: Data-Driven Defense of Cyber-Physical Systems
  • 1.4.3 Part III: Data-Driven Digital Twin Modeling
  • 1.4.4 Part IV: Non-Euclidean Data-Driven Modeling of Cyber-Physical Systems
  • 1.5 Summary
  • References
  • Part I Data-Driven Attack Modeling
  • 2 Data-Driven Attack Modeling Using Acoustic Side-Channel
  • 2.1 Introduction
  • 2.1.1 Research Challenges and Contributions
  • 2.2 Background and Related Work
  • 2.3 Sources of Acoustic Emission
  • 2.3.1 System Description
  • 2.3.2 Equation of Motion
  • 2.3.3 Natural Rotor Oscillation Frequency
  • 2.3.4 Stator Natural Frequency
  • 2.3.5 Source of Vibration
  • 2.3.5.1 Electromagnetic Source
  • 2.3.5.2 Mechanical Source
  • 2.4 Acoustic Leakage Analysis
  • 2.4.1 Side-Channel Leakage Model
  • 2.4.2 Leakage Quantification
  • 2.4.3 Leakage Exploitation
  • 2.5 Attack Model Description
  • 2.5.1 Attack Model
  • 2.5.2 Components of the Attack Model
  • 2.5.2.1 Data Acquisition
  • 2.5.2.2 Noise Filtering
  • 2.5.2.3 Maximal Overlap Discrete Wavelet Transform and Multiresolution Analysis
  • 2.5.2.4 Feature Extraction
  • 2.5.2.5 Regression Model
  • 2.5.2.6 Classification Model
  • 2.5.2.7 Direction Prediction Model
  • 2.5.2.8 Model Reconstruction
  • 2.5.2.9 Post-Processing for Model Reconstruction
  • 2.5.3 Attack Model Training and Evaluation
  • 2.6 Results for Test Objects
  • 2.6.1 Speed of Printing
  • 2.6.2 The Dimension of the Object
  • 2.6.3 The Complexity of the Object
  • 2.6.4 Reconstruction of a Square
  • 2.6.5 Reconstruction of a Triangle
  • 2.6.6 Case Study: Outline of a Key
  • 2.7 Discussion
  • 2.7.1 Technology Variation
  • 2.7.2 Sensor Position
  • 2.7.3 Sensor Number
  • 2.7.4 Dynamic Window
  • 2.7.5 Feature Separation during Multiple Axis Movement and Noise
  • 2.7.6 Target Machine Degradation
  • 2.8 Summary
  • References
  • 3 Aiding Data-Driven Attack Model with a Compiler Modification
  • 3.1 Introduction
  • 3.2 Attack Model Description
  • 3.3 Compiler Attack
  • 3.3.1 Profiling Phase
  • 3.3.2 Attack Phase
  • 3.3.3 Compiler Modification
  • 3.3.4 Transformations for Leakage Maximization
  • 3.4 Experimental Results
  • 3.4.1 Accuracy Metric
  • 3.4.2 Mutual Information
  • 3.4.3 Partial Success Rate
  • 3.4.4 Total Success Rate
  • 3.5 Discussion
  • 3.5.1 Countermeasures
  • 3.6 Summary
  • References
  • Part II Data-Driven Defense of Cyber-Physical Systems
  • 4 Data-Driven Defense Through Leakage Minimization
  • 4.1 Introduction
  • 4.1.1 Motivation for Leakage-Aware Security Tool
  • 4.1.2 Problem and Challenges
  • 4.1.3 Contributions
  • 4.2 System Modeling
  • 4.2.1 Data-driven Leakage Modeling and Quantification
  • 4.2.2 Attack Model
  • 4.2.3 Formulation of Data-Driven Leakage-Aware Optimization Problem