|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
on1142331932 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr nn||||mamaa |
008 |
200227s2020 si a o 100 0 eng d |
040 |
|
|
|a LQU
|b eng
|e pn
|c LQU
|d GW5XE
|d FIE
|d UKMGB
|d OCLCF
|d SRU
|d UKAHL
|d ORU
|d OCLCQ
|d OCLCO
|d COM
|d OCLCO
|d OCLCQ
|d OCLCO
|d S9M
|
066 |
|
|
|c (S
|
015 |
|
|
|a GBC042102
|2 bnb
|
016 |
7 |
|
|a 019723050
|2 Uk
|
019 |
|
|
|a 1143480616
|a 1151718333
|a 1151961579
|a 1152538621
|a 1153154829
|a 1153961434
|a 1154467176
|
020 |
|
|
|a 9789811511530
|
020 |
|
|
|a 9811511535
|
020 |
|
|
|z 9789811511523
|q (print)
|
024 |
8 |
|
|a 10.1007/978-981-15-1
|
035 |
|
|
|a (OCoLC)1142331932
|z (OCoLC)1143480616
|z (OCoLC)1151718333
|z (OCoLC)1151961579
|z (OCoLC)1152538621
|z (OCoLC)1153154829
|z (OCoLC)1153961434
|z (OCoLC)1154467176
|
037 |
|
|
|a com.springer.onix.9789811511530
|b Springer Nature
|
050 |
|
4 |
|a QA299.6
|
049 |
|
|
|a HCDD
|
111 |
2 |
|
|a International Conference on Recent Advances in Pure and Applied Mathematics
|d (2018 :
|c New Delhi, India)
|
245 |
1 |
0 |
|a Mathematical Analysis I : Approximation Theory :
|b ICRAPAM 2018, New Delhi, India, October 23-25 /
|c Naokant Deo, Vijay Gupta, Ana Maria Acu, P.N. Agrawal, editors.
|
246 |
3 |
|
|a ICRAPAM 2018
|
264 |
|
1 |
|a Singapore :
|b Springer,
|c 2020.
|
300 |
|
|
|a 1 online resource (xi, 261 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Springer proceedings in mathematics & statistics ;
|v 306
|
520 |
|
|
|a This book collects original research papers and survey articles presented at the International Conference on Recent Advances in Pure and Applied Mathematics (ICRAPAM), held at Delhi Technological University, India, on 23-25 October 2018. Divided into two volumes, it discusses major topics in mathematical analysis and its applications, and demonstrates the versatility and inherent beauty of analysis. It also shows the use of analytical techniques to solve problems and, wherever possible, derive their numerical solutions. This volume addresses major topics, such as operator theory, approximation theory, fixed-point theory, holomorphic functions, summability theory, and analytic functions. It is a valuable resource for students as well as researchers in mathematical sciences.
|
650 |
|
0 |
|a Mathematical analysis
|v Congresses.
|
650 |
|
7 |
|a Análisis matemático
|2 embne
|
650 |
|
7 |
|a Análisis matemático
|x Congresos
|2 embne
|
650 |
|
7 |
|a Mathematical analysis
|2 fast
|
655 |
|
7 |
|a proceedings (reports)
|2 aat
|
655 |
|
7 |
|a Conference papers and proceedings
|2 fast
|
655 |
|
7 |
|a Conference papers and proceedings.
|2 lcgft
|
655 |
|
7 |
|a Actes de congrès.
|2 rvmgf
|
700 |
1 |
|
|a Deo, Naokant.
|
700 |
1 |
|
|a Gupta, Vijay.
|
700 |
1 |
|
|a Acu, Ana Maria.
|
700 |
1 |
|
|a Agrawal, P. N.
|
830 |
|
0 |
|a Springer proceedings in mathematics & statistics ;
|v v. 306.
|
856 |
4 |
0 |
|u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-981-15-1153-0
|y Click for online access
|
880 |
0 |
|
|6 505-00/(S
|a A.J. Lopez-Moreno, Expressions, Localization Results and Voronovskaja Formulas for Generalized Durrmeyer Type Operators -- P.N. Agrawal and A. Kumar, Lupas Kantorovich Type Operators for Functions of Two Variables -- S. Pandey, S.R. Verma and S. Dixit, Bernstein Polynomials Multi Wavelets Operational Matrix for Solution of Differential Equation -- V. Gupta, Convergence Estimates of Certain Exponential Type Operators -- N. Bhardwaj, A Better Error Estimation on Generalized Positive Linear Operators Based on PED and IPED -- R. Pratap and N. Deo, Approximation by α-Bernstein-Kantrovich Operator -- A.A. Maria and V.A. Radu, Approximation by Certain Operators Linking the α-Bernstein and the Genuine α-Bernstein-Durrmeyer Operators -- M. Heilmann and I. Rasa, Note on a Proof for the Representation of the k-th Order Kantorovich Modification of Linking Baskakov Type Operators -- R. Chauhan and P.N. Agrawal, Degree of Approximation by Generalized Boolean Sum of λ-Bernstein Operators -- M. Dhamija, Durrmeyer Modification of Lupas Type Baskakov Operators Based on IPED -- F. Ozsarac, A. Aral and H. Karsli, On Bernstein-Chlodowsky Type Operators Preserving Exponential Functions -- A.-D. Filip and V.A. Radu, Iterative Approximation of Common Fixed Points in Kasahara Spaces -- V. Sihag and Dinesh, Vinod, Fixed Point Theorem in Fuzzy Metric Space Via α-Series Contraction -- A.A. Aserkar and M.P. Gandhi, The Unique Common Fixed-Point Theorem for Four Mappings Satisfying Common Limit in the Range -- S. Gandhi, Radius Estimates for Three Leaf Function and Convex Combination of Starlike Functions -- S. Anand, S. Kumar and V. Ravichandran: Starlikeness Associated with Admissible Functions -- M. Mundalia and S.S. Kumar, Coefficient Bounds for a Unified Class of Holomorphic Functions -- N.K. Jain and S. Yadav, Bohr Radius for Certain Analytic Functions -- V. Kumar, S. Kumar and V. Ravichandran, Third Hankel Determinant for Certain Classes of Analytic Functions -- R.H aloi and M. Sen, μ-Statistical Convergence of Sequences in Probabilistic n-Normed Spaces -- S. Shah and T. Das, Recent Advances in Distributional Chaos Theory -- A.K. Verma and S. Kumar, Lacunary Statistical Convergence of Order α for Generalized Difference Sequences and Summability through Modulus Function -- Ritika, Convergence of Three Step Iterative Process for Generalized Asymptotically Quasi-Non expansive Mappings in CAT(0) Spaces.
|
903 |
|
|
|a SPRING-MATH2020
|
994 |
|
|
|a 92
|b HCD
|