Monte Carlo methods / Adrian Barbu, Song-Chun Zhu.

This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte C...

Full description

Saved in:
Bibliographic Details
Main Authors: Barbu, Adrian G., 1971-, Zhu, Song Chun (Author)
Format: eBook
Language:English
Published: Singapore : Springer, [2020]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1143501895
003 OCoLC
005 20241006213017.0
006 m o d
007 cr nn||||mamaa
008 200224s2020 si a ob 001 0 eng d
040 |a FIE  |b eng  |e pn  |c FIE  |d OCLCO  |d EBLCP  |d GW5XE  |d VT2  |d OCLCQ  |d UKMGB  |d UPM  |d OCLCF  |d UKAHL  |d N$T  |d OCLCO  |d NLW  |d OCLCQ  |d OCLCO  |d OCLCQ  |d AUD  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ  |d OCLCL  |d S9M 
015 |a GBC042121  |2 bnb 
016 7 |a 019729366  |2 Uk 
019 |a 1142507820  |a 1147272769  |a 1148157561  |a 1151982013  |a 1153286344  |a 1156097904  |a 1156334321  |a 1160986736  |a 1162801067  |a 1197540684  |a 1203978865 
020 |a 9811329710 
020 |a 9789811329708  |q (print) 
020 |a 9811329702 
020 |a 9789811329722  |q (print) 
020 |a 9811329729 
020 |a 9789811329715  |q (electronic bk.) 
024 7 |a 10.1007/978-981-13-2971-5  |2 doi 
035 |a (OCoLC)1143501895  |z (OCoLC)1142507820  |z (OCoLC)1147272769  |z (OCoLC)1148157561  |z (OCoLC)1151982013  |z (OCoLC)1153286344  |z (OCoLC)1156097904  |z (OCoLC)1156334321  |z (OCoLC)1160986736  |z (OCoLC)1162801067  |z (OCoLC)1197540684  |z (OCoLC)1203978865 
037 |a com.springer.onix.9789811329715  |b Springer Nature 
050 4 |a QA298 
072 7 |a PBKS  |2 bicssc 
072 7 |a MAT006000  |2 bisacsh 
072 7 |a PBKS  |2 thema 
049 |a HCDD 
100 1 |a Barbu, Adrian G.,  |d 1971-  |1 https://id.oclc.org/worldcat/entity/E39PCjM839Fdc3TGj4fMcmMmv3 
245 1 0 |a Monte Carlo methods /  |c Adrian Barbu, Song-Chun Zhu. 
264 1 |a Singapore :  |b Springer,  |c [2020] 
300 |a 1 online resource (xvi, 422 pages) :  |b 250 illustrations, 185 illustrations in color 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
505 0 |a 1 Introduction to Monte Carlo Methods -- 2 Sequential Monte Carlo -- 3 Markov Chain Monte Carlo -- the Basics -- 4 Metropolis Methods and Variants -- 5 Gibbs Sampler and its Variants -- 6 Cluster Sampling Methods -- 7 Convergence Analysis of MCMC -- 8 Data Driven Markov Chain Monte Carlo -- 9 Hamiltonian and Langevin Monte Carlo -- 10 Learning with Stochastic Gradient -- 11 Mapping the Energy Landscape. 
504 |a Includes bibliographical references and index. 
520 |a This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.--  |c Provided by publisher. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed March 26, 2020). 
650 0 |a Monte Carlo method. 
650 0 |a Computer science  |x Mathematics. 
650 0 |a Mathematical statistics. 
650 0 |a Optical data processing. 
650 0 |a Statistics. 
650 7 |a statistics.  |2 aat 
650 7 |a Estadística  |2 embne 
650 7 |a Matemáticas discretas  |2 embne 
650 7 |a Computer science  |x Mathematics  |2 fast 
650 7 |a Mathematical statistics  |2 fast 
650 7 |a Monte Carlo method  |2 fast 
650 7 |a Optical data processing  |2 fast 
650 7 |a Statistics  |2 fast 
700 1 |a Zhu, Song Chun,  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJk96T97bmK6vxMppqqCwC 
758 |i has work:  |a Monte Carlo methods (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGjqD47gmdqycBQbcMgPHC  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 9789811329708 
776 0 8 |i Print version:  |z 9789811329722 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-981-13-2971-5  |y Click for online access 
903 |a SPRING-MATH2020 
994 |a 92  |b HCD