Nature inspired optimization for electrical power system / Manjaree Pandit, Hari Mohan Dubey, Jagdish Chand Bansal, editors.

This book presents a wide range of optimization methods and their applications to various electrical power system problems such as economical load dispatch, demand supply management in microgrids, levelized energy pricing, load frequency control and congestion management, and reactive power manageme...

Full description

Saved in:
Bibliographic Details
Other Authors: Pandit, Manjaree (Editor), Dubey, Hari Mohan (Editor), Bansal, Jagdish Chand (Editor)
Format: eBook
Language:English
Published: Singapore : Springer, 2020.
Series:Algorithms for intelligent systems.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1149704838
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
008 200412s2020 si o 000 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d LQU  |d OCLCQ  |d OCLCF  |d UKAHL  |d UKMGB  |d OCLCQ  |d OCLCO  |d COM  |d GUA  |d OCLCQ  |d SFB  |d ORU  |d AUD  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL 
015 |a GBC080914  |2 bnb 
016 7 |a 019823539  |2 Uk 
019 |a 1150185820  |a 1152545544  |a 1153162099  |a 1153957729  |a 1154482384  |a 1155232007 
020 |a 9789811540042  |q (electronic bk.) 
020 |a 9811540047  |q (electronic bk.) 
020 |z 9811540039 
020 |z 9789811540035 
024 8 |a 10.1007/978-981-15-4 
035 |a (OCoLC)1149704838  |z (OCoLC)1150185820  |z (OCoLC)1152545544  |z (OCoLC)1153162099  |z (OCoLC)1153957729  |z (OCoLC)1154482384  |z (OCoLC)1155232007 
037 |a com.springer.onix.9789811540042  |b Springer Nature 
050 4 |a QA76.9.N37 
049 |a HCDD 
245 0 0 |a Nature inspired optimization for electrical power system /  |c Manjaree Pandit, Hari Mohan Dubey, Jagdish Chand Bansal, editors. 
264 1 |a Singapore :  |b Springer,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Algorithms for intelligent systems 
505 0 |a Intro -- Preface -- Synopsis -- Contents -- About the Editors -- 1 Teaching-Learning-Based Optimization for Static and Dynamic Load Dispatch -- 1 Introduction -- 2 Problem Statement -- 3 Teaching-Learning-Based Optimization -- 4 Description of Problems and Simulation Results -- 5 Conclusion -- References -- 2 Application of Elitist Teacher-Learner-Based Optimization Algorithm for Congestion Management -- 1 Introduction -- 2 Problem Formulation -- 2.1 Equality Constraints -- 2.2 Inequality Constraints -- 2.3 Fitness Function -- 3 Frame of Elitist Teacher-Learner-Based Optimization (ETLBO) 
505 8 |a 3.1 Teacher Phase -- 3.2 Learner Phase -- 3.3 Elitism -- 4 Elitist TLBO for Congestion Management -- 4.1 About Test Systems -- 4.2 Line Outage Contingency: Case I -- 4.3 Sudden Increment in Demand with Single Line Outage: Case II -- 4.4 Abrupt Line Power Limits Variation: Case III and IV -- 4.5 Generation Rescheduling for CM -- 4.6 ETLBO for Solution of CM Problem: Mathematical Procedure -- 5 Numerical Results and Analysis -- 5.1 Convergence Analysis of ETLBO -- 6 Conclusions -- References -- 3 PSO-Based Optimization of Levelized Cost of Energy for Hybrid Renewable Energy System -- 1 Introduction 
505 8 |a 2 Problem Formulation -- 3 Optimization of LCOE -- 3.1 Power Generation Equality/Inequality Constraint -- 4 Results and Discussion -- 4.1 Test Case Description -- 4.2 Optimization of LCOE -- 4.3 Effect of Capacity Factor on Optimal Value of LCOE -- 4.4 Convergence Characteristics of the Solver -- 4.5 Validation of Results Using Particle Swarm Optimization -- 5 Conclusion -- References -- 4 PSO-Based PID Controller Designing for LFC of Single Area Electrical Power Network -- 1 Introduction -- 2 Problem Formulation -- 2.1 System Description -- 2.2 A Brief Introduction of PID Controller 
505 8 |a 2.3 Objective Function Formulation -- 3 Employed Optimization Techniques -- 3.1 GA -- 3.2 PSO -- 4 Results and Discussions -- 4.1 Case 1: Objective Function-IAE -- 4.2 Case 2: Objective Function-ISE -- 4.3 Case 3: Objective Function-ITAE -- 4.4 Case 4: Objective Function-ITSE -- 5 Conclusion -- References -- 5 Combined Economic Emission Dispatch of Hybrid Thermal PV System Using Artificial Bee Colony Optimization -- 1 Introduction -- 2 Problem Formulation -- 2.1 Objective Function -- 2.2 Equality Constraint -- 2.3 Inequality Constraint -- 3 Artificial Bee Colony Optimization 
505 8 |a 4 Results and Discussion -- 4.1 Description of Test Cases -- 4.2 Simulation Results -- 5 Conclusion -- References -- 6 Dynamic Scheduling of Energy Resources in Microgrid Using Grey Wolf Optimization -- 1 Introduction -- 2 Problem Formulation -- 2.1 Inequality Constraints -- 2.2 Equality Constraints -- 3 Grey Wolf Optimization -- 4 Results and Discussion -- 4.1 Description of Test Cases -- 4.2 Simulation Results -- 5 Conclusion -- References -- 7 Mixed-Integer Differential Evolution Algorithm for Optimal Static/Dynamic Scheduling of a Microgrid with Mixed Generation -- 1 Introduction 
520 |a This book presents a wide range of optimization methods and their applications to various electrical power system problems such as economical load dispatch, demand supply management in microgrids, levelized energy pricing, load frequency control and congestion management, and reactive power management in radial distribution systems. Problems related to electrical power systems are often highly complex due to the massive dimensions, nonlinearity, non-convexity and discontinuity associated with objective functions. These systems also have a large number of equality and inequality constraints, which give rise to optimization problems that are difficult to solve using classical numerical methods. In this regard, nature inspired optimization algorithms offer an effective alternative, due to their ease of use, population-based parallel search mechanism, non-dependence on the nature of the problem, and ability to accommodate non-differentiable, non-convex problems. The analytical model of nature inspired techniques mimics the natural behaviors and intelligence of life forms. These techniques are mainly based on evolution, swarm intelligence, ecology, human intelligence and physical science. 
650 0 |a Nature-inspired algorithms. 
650 0 |a Mathematical optimization. 
650 0 |a Electrical engineering. 
650 0 |a Mathematics. 
650 7 |a electrical engineering.  |2 aat 
650 7 |a mathematics.  |2 aat 
650 7 |a applied mathematics.  |2 aat 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Nature-inspired algorithms  |2 fast 
700 1 |a Pandit, Manjaree,  |e editor. 
700 1 |a Dubey, Hari Mohan,  |e editor. 
700 1 |a Bansal, Jagdish Chand,  |e editor. 
758 |i has work:  |a Nature Inspired Optimization for Electrical Power System (Text)  |1 https://id.oclc.org/worldcat/entity/E39PD3dyk7qXdPPMk4M4DKfHyb  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |t Nature inspired optimization for electrical power system.  |d Singapore : Springer, 2020  |z 9811540039  |z 9789811540035  |w (OCoLC)1142510603 
830 0 |a Algorithms for intelligent systems. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-981-15-4004-2  |y Click for online access 
903 |a SPRING-ENGINE2020 
994 |a 92  |b HCD