Conformally invariant metrics and quasiconformal mappings Parisa Hariri, Riku Klén, Matti Vuorinen.

This book is an introduction to the theory of quasiconformal and quasiregular mappings in the euclidean n-dimensional space, (where n is greater than 2). There are many ways to develop this theory as the literature shows. The authors' approach is based on the use of metrics, in particular confo...

Full description

Saved in:
Bibliographic Details
Main Author: Hairi, Parisa
Other Authors: Klén, Riku, Vuorinen, Matti
Format: eBook
Language:English
Published: Cham : Springer, 2020.
Series:Springer monographs in mathematics.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1150962534
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
008 200419s2020 sz ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d LQU  |d N$T  |d OCLCF  |d UKAHL  |d NLW  |d UKMGB  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d AUD  |d OCLCQ  |d S9M  |d OCLCQ  |d OCLCL 
015 |a GBC0J5817  |2 bnb 
016 7 |a 019809087  |2 Uk 
019 |a 1151195295  |a 1152535588  |a 1153163654  |a 1153954766  |a 1154476299 
020 |a 9783030320683  |q (electronic bk.) 
020 |a 3030320685  |q (electronic bk.) 
020 |z 9783030320676 
020 |z 3030320677 
024 8 |a 10.1007/978-3-030-32 
035 |a (OCoLC)1150962534  |z (OCoLC)1151195295  |z (OCoLC)1152535588  |z (OCoLC)1153163654  |z (OCoLC)1153954766  |z (OCoLC)1154476299 
037 |a com.springer.onix.9783030320683  |b Springer Nature 
050 4 |a QA360 
049 |a HCDD 
100 1 |a Hairi, Parisa. 
245 1 0 |a Conformally invariant metrics and quasiconformal mappings  |h [electronic resource] /  |c Parisa Hariri, Riku Klén, Matti Vuorinen. 
260 |a Cham :  |b Springer,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer monographs in mathematics 
504 |a Includes bibliographical references and index. 
505 0 |a Part I: Introduction and Review -- Introduction -- A Survey of QuasiregularMappings -- Part II: Conformal Geometry -- Möbius Transformations -- Hyperbolic Geometry -- Generalized Hyperbolic Geometries -- Metrics and Geometry -- Part III: Modulus and Capacity -- The Modulus of a Curve Family -- The Modulus as a Set Function -- The Capacity of a Condenser -- Conformal Invariants -- Part IV: Intrinsic Geometry -- Hyperbolic Type Metrics -- Comparison of Metrics -- Local Convexity of Balls -- Inclusion Results for Balls -- Part V: QuasiregularMappings -- Basic Properties of QuasiregularMappings -- Distortion Theory -- Dimension-Free Theory -- Metrics and Maps -- Teichmüllers Displacement Problem -- Part VI: Solutions -- Solutions to Exercises. 
520 |a This book is an introduction to the theory of quasiconformal and quasiregular mappings in the euclidean n-dimensional space, (where n is greater than 2). There are many ways to develop this theory as the literature shows. The authors' approach is based on the use of metrics, in particular conformally invariant metrics, which will have a key role throughout the whole book. The intended readership consists of mathematicians from beginning graduate students to researchers. The prerequisite requirements are modest: only some familiarity with basic ideas of real and complex analysis is expected. 
650 0 |a Quasiconformal mappings. 
650 7 |a Differential & Riemannian geometry.  |2 bicssc 
650 7 |a Stochastics.  |2 bicssc 
650 7 |a Mathematics  |x Geometry  |x Differential.  |2 bisacsh 
650 7 |a Mathematics  |x Vector Analysis.  |2 bisacsh 
650 7 |a Matemáticas  |x Análisis vectorial  |2 embne 
650 0 7 |a Aplicaciones cuasi-conformes  |2 embucm 
650 7 |a Quasiconformal mappings  |2 fast 
700 1 |a Klén, Riku. 
700 1 |a Vuorinen, Matti. 
758 |i has work:  |a Conformally invariant metrics and quasiconformal mappings (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGjtDrM7qcB3BvtCmk9DpX  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |z 3030320677  |z 9783030320676  |w (OCoLC)1114745112 
830 0 |a Springer monographs in mathematics. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-32068-3  |y Click for online access 
903 |a SPRING-MATH2020 
994 |a 92  |b HCD