Statistical analysis of empirical data : methods for applied sciences / Scott Pardo.

Researchers and students who use empirical investigation in their work must go through the process of selecting statistical methods for analyses, and they are often challenged to justify these selections. This book is designed for readers with limited background in statistical methodology who seek g...

Full description

Saved in:
Bibliographic Details
Main Author: Pardo, Scott (Author)
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, [2020]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1153759219
003 OCoLC
005 20241006213017.0
006 m o d
007 cr un|---aucuu
008 200523s2020 sz a ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d GW5XE  |d EBLCP  |d YDX  |d UPM  |d OCLCF  |d N$T  |d UKMGB  |d NLW  |d UKAHL  |d IWU  |d OCLCO  |d OCLCQ  |d COM  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL  |d OCLCQ 
015 |a GBC077520  |2 bnb 
016 7 |a 019817055  |2 Uk 
019 |a 1156618541  |a 1157253091  |a 1162670044 
020 |a 9783030433284  |q (electronic bk.) 
020 |a 3030433285 
020 |z 9783030433277  |q (print) 
020 |z 3030433277 
024 7 |a 10.1007/978-3-030-43328-4  |2 doi 
035 |a (OCoLC)1153759219  |z (OCoLC)1156618541  |z (OCoLC)1157253091  |z (OCoLC)1162670044 
037 |a com.springer.onix.9783030433284  |b Springer Nature 
050 4 |a QA276  |b .P252 2020eb 
072 7 |a PBT  |2 bicssc 
072 7 |a MAT029000  |2 bisacsh 
072 7 |a PBT  |2 thema 
049 |a HCDD 
100 1 |a Pardo, Scott,  |e author. 
245 1 0 |a Statistical analysis of empirical data :  |b methods for applied sciences /  |c Scott Pardo. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2020] 
300 |a 1 online resource (xi, 277 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
504 |a Includes bibliographical references and index. 
505 0 |a Chapter 1: Fundamentals -- Chapter 2: Sample Statistics are NOT Parameters -- Chapter 3: Confidence -- Chapter 4: Multiplicity and Multiple Comparisons -- Chapter 5: Power and the Myth of Sample Size Determination -- Chapter 6: Regression and Model Fitting with Collinearity -- Chapter 7: Overparameterization -- Chapter 8: Ignoring Error Control Factors and Experimental Design -- Chapter 9: Generalized Linear Models -- Chapter 10: Mixed Models and Variance Components -- Chapter 11: Models, Models Everywhere ... Model Selection -- Chapter 12: Bayesian Analyses -- Chapter 13: The Acceptance Sampling Game -- Chapter 14: Nonparametric Statistics -- A Strange Name -- Chapter 15: Autocorrelated Data and Dynamic Systems -- Chapter 16: Multivariate Analysis and Classification -- Chapter 17: Time-to-Event: Survival and Life Testing -- Appendix: Review of Some Mathematical Concepts -- References -- Index. 
520 |a Researchers and students who use empirical investigation in their work must go through the process of selecting statistical methods for analyses, and they are often challenged to justify these selections. This book is designed for readers with limited background in statistical methodology who seek guidance in defending their statistical decision-making in the worlds of research and practice. It is devoted to helping students and scholars find the information they need to select data analytic methods, and to speak knowledgeably about their statistical research processes. Each chapter opens with a conundrum relating to the selection of an analysis, or to explaining the nature of an analysis. Throughout the chapter, the analysis is described, along with some guidance in justifying the choices of that particular method. Designed to offer statistical knowledge to the non-specialist, this volume can be used in courses on research methods, or for courses on statistical applications to biological, medical, life, social, or physical sciences. It will also be useful to academic and industrial researchers in engineering and in the physical sciences who will benefit from a stronger understanding of how to analyze empirical data. The book is written for those with foundational education in calculus. However, a brief review of fundamental concepts of probability and statistics, together with a primer on some concepts in elementary calculus and matrix algebra, is included. R code and sample datasets are provided. 
588 0 |a Online resource; title from PDF title page (ProQuest Ebook Central, viewed February 8, 2021). 
650 0 |a Mathematical statistics. 
650 7 |a Bayesian inference.  |2 bicssc 
650 7 |a Probability & statistics.  |2 bicssc 
650 7 |a Social research & statistics.  |2 bicssc 
650 7 |a Mathematics  |x Probability & Statistics  |x Bayesian Analysis.  |2 bisacsh 
650 7 |a Medical  |x Biostatistics.  |2 bisacsh 
650 7 |a Social Science  |x Statistics.  |2 bisacsh 
650 7 |a Mathematics  |x Probability & Statistics  |x General.  |2 bisacsh 
650 7 |a Mathematical statistics  |2 fast 
655 0 |a Electronic books. 
758 |i has work:  |a Statistical analysis of empirical data (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFVrKPPqq9t69FTCCm3Hwd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Pardo, Scott.  |t Statistical Analysis of Empirical Data : Methods for Applied Sciences.  |d Cham : Springer, ©2020  |z 9783030433277 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-43328-4  |y Click for online access 
903 |a SPRING-MATH2020 
994 |a 92  |b HCD