Migrating from R to Python for data analysis / Rajat Jatana.

Learn: Writing and running Python in IPython. Using Python lists and dictionaries. Creating NumPy arrays. Indexing and slicing in NumPy. Downloading and parsing data files into NumPy and pandas. Using multilevel series in pandas. Aggregating data in pandas. About: R has been the go-to language in da...

Full description

Saved in:
Bibliographic Details
Main Author: Jatana, Rajat (Author, Speaker)
Format: Video
Language:English
Published: Birmingham, England : PACKT Publishing, 2019.
Series:Academic Video Online
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cgm a2200000 i 4500
001 on1154004726
003 OCoLC
005 20241120213016.0
006 m o c
007 cr |n||||||||a
007 vz |za|z|
008 200423s2019 enk178 e o vneng d
040 |a ALSTP  |b eng  |e rda  |c ALSTP  |d OCLCO  |d OCLCF  |d OCLCO  |d OCLCQ  |d DXU  |d OCLCQ 
019 |a 1373551353  |a 1443992149 
020 |z 9781838643690 
035 |a (OCoLC)1154004726  |z (OCoLC)1373551353  |z (OCoLC)1443992149 
049 |a HCDD 
245 0 0 |a Migrating from R to Python for data analysis /  |c Rajat Jatana. 
264 1 |a Birmingham, England :  |b PACKT Publishing,  |c 2019. 
300 |a 1 online resource (178 minutes) 
306 |a 025742 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file  |2 rda 
490 0 |a Academic Video Online 
500 |a Title from resource description page (viewed April 23, 2020). 
511 0 |a Presenter, Rajat Jatana. 
520 |a Learn: Writing and running Python in IPython. Using Python lists and dictionaries. Creating NumPy arrays. Indexing and slicing in NumPy. Downloading and parsing data files into NumPy and pandas. Using multilevel series in pandas. Aggregating data in pandas. About: R has been the go-to language in data science for the last decade. However, given the latest developments and enhancements in Python's capabilities and its numerous supportive libraries, Python has dethroned R and is the first choice for data science enthusiasts, especially those working on descriptive and prescriptive analytics. In this course, you will be performing data analysis on some popular datasets from Kaggle such as the Red Wine and White Wine analysis datasets. You will see how the coding structure for Python analyses on Jupyter notebooks is drastically simplified using fewer lines of code, with far fewer dependencies. While working with powerful libraries (NumPy and pandas), you will slice and dice data for relevant insights. Moving on, you will also learn about great visualization features which are greatly enhanced, faster, and easier to use in Python 3. By the end of this course, you will be familiar with Python functions and will be able to transform your R code into Python with far fewer lines of code, better performance, and increased speed. All the related code files are placed on GitHub repository. 
546 |a In English. 
650 0 |a Python (Computer program language) 
650 0 |a R (Computer program language) 
650 0 |a Data mining. 
650 0 |a Information visualization. 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
650 7 |a Information visualization.  |2 fast  |0 (OCoLC)fst00973185 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
650 7 |a R (Computer program language)  |2 fast  |0 (OCoLC)fst01086207 
655 7 |a Instructional films.  |2 fast  |0 (OCoLC)fst01726236 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Films de formation.  |2 rvmgf 
700 1 |a Jatana, Rajat,  |e author,  |e speaker. 
710 2 |a Packt Publishing,  |e production company. 
776 0 8 |i DVD version:  |z 9781838643690 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://www.aspresolver.com/aspresolver.asp?MARC;4740704  |y Click for online access 
903 |a ASP-AV 
994 |a 92  |b HCD