Critical point theory : sandwich and linking systems / Martin Schechter.

This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author's own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book w...

Full description

Saved in:
Bibliographic Details
Main Author: Schechter, Martin
Format: eBook
Language:English
Published: Cham : Birkhäuser, 2020.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1156624717
003 OCoLC
005 20250225213021.0
006 m o d
007 cr |n|||||||||
008 200605s2020 sz ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d OCLCF  |d NLW  |d UKMGB  |d SFB  |d OCLCO  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
015 |a GBC0J5873  |2 bnb 
016 7 |a 019821288  |2 Uk 
020 |a 9783030456030  |q (electronic bk.) 
020 |a 303045603X  |q (electronic bk.) 
020 |z 3030456021 
020 |z 9783030456023 
035 |a (OCoLC)1156624717 
037 |a com.springer.onix.9783030456030  |b Springer Nature 
050 4 |a QA614.7 
049 |a HCDD 
100 1 |a Schechter, Martin. 
245 1 0 |a Critical point theory :  |b sandwich and linking systems /  |c Martin Schechter. 
260 |a Cham :  |b Birkhäuser,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Preface -- Linking Systems -- Sandwich Systems -- Linking Sandwich Sets -- The Monotonicity Trick -- Infinite Dimensional Linking -- Differential Equations -- Schrödinger Equations -- Zero in the Spectrum -- Global Solutions -- Second Order Hamiltonian Systems -- Core Functions -- Custom Monotonicity Methods -- Elliptic Systems -- Flows and Critical Points -- The Semilinear Wave Equation -- Nonlinear Optics -- Radially Symmetric Wave Equations -- Multiple Solutions. 
520 |a This monograph collects cutting-edge results and techniques for solving nonlinear partial differential equations using critical points. Including many of the author's own contributions, a range of proofs are conveniently collected here, Because the material is approached with rigor, this book will serve as an invaluable resource for exploring recent developments in this active area of research, as well as the numerous ways in which critical point theory can be applied. Different methods for finding critical points are presented in the first six chapters. The specific situations in which these methods are applicable is explained in detail. Focus then shifts toward the book's main subject: applications to problems in mathematics and physics. These include topics such as Schrödinger equations, Hamiltonian systems, elliptic systems, nonlinear wave equations, nonlinear optics, semilinear PDEs, boundary value problems, and equations with multiple solutions. Readers will find this collection of applications convenient and thorough, with detailed proofs appearing throughout. Critical Point Theory will be ideal for graduate students and researchers interested in solving differential equations, and for those studying variational methods. An understanding of fundamental mathematical analysis is assumed. In particular, the basic properties of Hilbert and Banach spaces are used. 
650 0 |a Critical point theory (Mathematical analysis) 
650 7 |a Functional analysis & transforms.  |2 bicssc 
650 7 |a Numerical analysis.  |2 bicssc 
650 7 |a Calculus & mathematical analysis.  |2 bicssc 
650 7 |a Optimization.  |2 bicssc 
650 7 |a Mathematics  |x Functional Analysis.  |2 bisacsh 
650 7 |a Mathematics  |x Mathematical Analysis.  |2 bisacsh 
650 7 |a Mathematics  |x Applied.  |2 bisacsh 
650 7 |a Matemáticas  |x Análisis Matemático  |2 embne 
650 7 |a Análisis numérico  |2 embne 
650 7 |a Critical point theory (Mathematical analysis)  |2 fast 
758 |i has work:  |a Critical point theory (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFtgFyH7j3xvfwdpq4vTH3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |c Original  |z 3030456021  |z 9783030456023  |w (OCoLC)1145624238 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-45603-0  |y Click for online access 
903 |a SPRING-MATH2020 
994 |a 92  |b HCD