Cooling electrons in nanoelectronic devices by on-chip demagnetisation / Alexander Thomas Jones.

This thesis demonstrates that an ultralow temperature refrigeration technique called "demagnetisation refrigeration" can be miniaturised and incorporated onto millimeter-sized chips to cool nanoelectronic circuits, devices and materials. Until recently, the lowest temperature ever reached...

Full description

Saved in:
Bibliographic Details
Main Author: Jones, Alexander Thomas
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, 2020.
Series:Springer theses.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1176247943
003 OCoLC
005 20240909213021.0
006 m o d
007 cr |n|||||||||
008 200722s2020 sz a ob 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d LQU  |d OCLCF  |d NLW  |d LIP  |d HS0  |d UKAHL  |d NLE  |d VT2  |d OCL  |d OCLCO  |d OCLCQ  |d YSM  |d OCLCQ  |d OCLCO  |d GUA  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCL  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1175916725  |a 1178999538  |a 1182459144  |a 1182919286  |a 1183935637  |a 1190683613  |a 1193274260  |a 1195471763  |a 1196162259  |a 1197556315  |a 1198145978  |a 1198816546  |a 1203739052  |a 1204413798  |a 1221571698  |a 1224940500  |a 1226240145 
020 |a 9783030512330  |q (electronic bk.) 
020 |a 3030512339  |q (electronic bk.) 
020 |z 3030512320 
020 |z 9783030512323 
024 7 |a 10.1007/978-3-030-51233-0.  |2 doi 
024 8 |a 10.1007/978-3-030-51 
035 |a (OCoLC)1176247943  |z (OCoLC)1175916725  |z (OCoLC)1178999538  |z (OCoLC)1182459144  |z (OCoLC)1182919286  |z (OCoLC)1183935637  |z (OCoLC)1190683613  |z (OCoLC)1193274260  |z (OCoLC)1195471763  |z (OCoLC)1196162259  |z (OCoLC)1197556315  |z (OCoLC)1198145978  |z (OCoLC)1198816546  |z (OCoLC)1203739052  |z (OCoLC)1204413798  |z (OCoLC)1221571698  |z (OCoLC)1224940500  |z (OCoLC)1226240145 
050 4 |a QC278 
072 7 |a PHFB.  |2 bicssc 
072 7 |a SCI065000.  |2 bisacsh 
072 7 |a PHFB.  |2 thema 
049 |a HCDD 
100 1 |a Jones, Alexander Thomas. 
245 1 0 |a Cooling electrons in nanoelectronic devices by on-chip demagnetisation /  |c Alexander Thomas Jones. 
260 |a Cham, Switzerland :  |b Springer,  |c 2020. 
300 |a 1 online resource :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Springer theses 
500 |a "Doctoral Thesis accepted by Lancaster University, Lancaster, United Kingdom." 
504 |a Includes bibliographical references. 
505 0 |a Intro -- Supervisor's Foreword -- Abstract -- Acknowledgements -- Contents -- Acronyms -- 1 Introduction -- References -- 2 Background -- 2.1 Cooling Techniques -- 2.1.1 Dilution Refrigeration -- 2.1.2 Magnetic Cooling -- 2.2 Coulomb Blockade Thermometry -- 2.2.1 Outline -- 2.2.2 Orthodox Theory of Single Electron Tunnelling -- 2.2.3 Practical Measurements -- 2.3 On-Chip Refrigeration -- 2.3.1 Motivation and Principles -- 2.3.2 Techniques -- References -- 3 On-Chip Demagnetisation Cooling on a Cryogen-Free Dilution Refrigerator -- 3.1 Coulomb Blockade Thermometer Device 
505 8 |a 3.2 Experimental Set-Up -- 3.2.1 Mounting and Heatsinking -- 3.2.2 Electrical -- 3.3 CBT Characteristics -- 3.4 CBT Cooling -- 3.4.1 Initial Experiments -- 3.4.2 Thermal Modelling -- 3.4.3 Optimisation -- 3.5 Conclusions -- References -- 4 On-Chip Demagnetisation Cooling on a Cryogen-Filled Dilution Refrigerator -- 4.1 Experimental Set-Up -- 4.1.1 Mounting and Heatsinking -- 4.1.2 Electrical -- 4.2 CBT Measurements -- 4.2.1 Additional Techniques -- 4.2.2 Characterisation Results -- 4.3 Demagnetisation Cooling -- 4.4 Conclusions -- References 
505 8 |a 5 On-Chip Demagnetisation Cooling of a High Capacitance CBT -- 5.1 Experimental Set-Up -- 5.1.1 New CBT Fabrication -- 5.1.2 Precooling -- 5.2 CBT Characterisation -- 5.3 Demagnetisation Cooling -- 5.4 Heat Leaks -- 5.5 CBT Copper -- 5.6 Conclusions -- References -- 6 Summary and Outlook -- References 
520 |a This thesis demonstrates that an ultralow temperature refrigeration technique called "demagnetisation refrigeration" can be miniaturised and incorporated onto millimeter-sized chips to cool nanoelectronic circuits, devices and materials. Until recently, the lowest temperature ever reached in such systems was around 4 millikelvin. Here, a temperature of 1.2mK is reported in a nanoelectronic device. The thesis introduces the idea that on-chip demagnetization refrigeration can be used to cool a wide variety of nanostructures and devices to microkelvin temperatures. This brings the exciting possibility of discovering new physics, such as exotic electronic phases, in an unexplored regime and the potential to improve the performance of existing applications, including solid-state quantum technologies. Since the first demonstration of on-chip demagnetization refrigeration, described here, the technique has been taken up by other research groups around the world. The lowest on-chip temperature is currently 0.4mK. Work is now underway to adapt the technique to cool other materials and devices, ultimately leading to a platform to study nanoscale materials, devices and circuits at microkelvin temperatures 
650 0 |a Adiabatic demagnetization. 
650 0 |a Electron temperature. 
650 0 |a Low temperature engineering. 
650 7 |a Materials science.  |2 bicssc 
650 7 |a Spectrum analysis, spectrochemistry, mass spectrometry.  |2 bicssc 
650 7 |a Low temperature physics.  |2 bicssc 
650 7 |a Technology & Engineering  |x Material Science.  |2 bisacsh 
650 7 |a Science  |x Solid State Physics.  |2 bisacsh 
650 7 |a Science  |x Mechanics  |x Dynamics  |x Thermodynamics.  |2 bisacsh 
650 7 |a Low temperature engineering  |2 fast 
650 7 |a Electron temperature  |2 fast 
650 7 |a Adiabatic demagnetization  |2 fast 
650 7 |a Low temperatures  |2 fast 
650 7 |a Materials science  |2 fast 
650 7 |a Solid state physics  |2 fast 
655 0 |a Electronic books. 
758 |i has work:  |a COOLING ELECTRONS IN NANOELECTRONIC DEVICES BY ON IP DEMAGNETISATION (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCXjjKRCyhTgBkC7Gjcht6q  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Jones, Alexander Thomas.  |t Cooling electrons in nanoelectronic devides by on-chip demagnetisation.  |d Cham, Switzerland : Springer, 2020  |z 3030512320  |z 9783030512323  |w (OCoLC)1155564629 
830 0 |a Springer theses. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-51233-0  |y Click for online access 
903 |a SPRING-PHYSICS2020 
994 |a 92  |b HCD