Heuristics for optimization and learning / Farouk Yalaoui, Lionel Amodeo, El-Ghazali Talbi, editors.

This book is a new contribution aiming to give some last research findings in the field of optimization and computing. This work is in the same field target than our two previous books published: Recent Developments in Metaheuristics and Metaheuristics for Production Systems, books in Springer Serie...

Full description

Saved in:
Bibliographic Details
Corporate Author: International Conference on Metaheuristics and Nature Inspired Computing
Other Authors: Yalaoui, Farouk, Amodeo, Lionel, Talbi, El-Ghazali, 1965-
Format: eBook
Language:English
Published: Cham : Springer, 2020.
Series:Studies in computational intelligence ; v. 906.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1228033987
003 OCoLC
005 20241006213017.0
006 m o d
007 cr un|---aucuu
008 201226s2020 sz o 101 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d GW5XE  |d YDX  |d SFB  |d OCLCO  |d OCLCF  |d N$T  |d UKAHL  |d OCLCO  |d OCLCQ  |d COM  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCL 
019 |a 1227240794  |a 1227389366  |a 1237465978 
020 |a 9783030589301  |q (electronic bk.) 
020 |a 3030589307  |q (electronic bk.) 
020 |z 9783030589295  |q (print) 
020 |z 3030589293 
024 7 |a 10.1007/978-3-030-58930-1  |2 doi 
035 |a (OCoLC)1228033987  |z (OCoLC)1227240794  |z (OCoLC)1227389366  |z (OCoLC)1237465978 
050 4 |a QA76.9.A43 
072 7 |a TEC009000  |2 bisacsh 
072 7 |a UYQ  |2 bicssc 
072 7 |a UYQ  |2 thema 
049 |a HCDD 
245 0 0 |a Heuristics for optimization and learning /  |c Farouk Yalaoui, Lionel Amodeo, El-Ghazali Talbi, editors. 
260 |a Cham :  |b Springer,  |c 2020. 
300 |a 1 online resource (444 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Studies in computational intelligence ;  |v v. 906 
505 0 |a Intro -- Preface -- Contents -- 1 Process Plan Generation for Reconfigurable Manufacturing Systems: Exact Versus Evolutionary-Based Multi-objective Approaches -- 1.1 Introduction -- 1.2 Literature Review -- 1.3 Problem Description and Mathematical Formulation -- 1.3.1 Problem Description -- 1.3.2 Mathematical Formulation -- 1.4 Proposed Approaches -- 1.4.1 Iterative Multi-Objective Integer Linear Program (I-MOILP) -- 1.4.2 Adapted Archived Multi-Objective Simulated-Annealing (AMOSA) -- 1.4.3 Adapted Non Dominated Sorting Genetic Algorithm II (NSGA-II) -- 1.5 Experimental Results and Analyses 
505 8 |a 1.5.1 Experimental Scheme 1 -- 1.5.2 Experimental Scheme 2 -- 1.6 Conclusion -- References -- 2 On VNS-GRASP and Iterated Greedy Metaheuristics for Solving Hybrid Flow Shop Scheduling Problem with Uniform Parallel Machines and Sequence Independent Setup Time -- 2.1 Introduction -- 2.2 Description of the Hybrid Flow Shop Problem -- 2.3 Resolution -- 2.3.1 Initialization Heuristics -- 2.3.2 Metaheuristics -- 2.4 Numerical Simulation -- 2.4.1 Simulation Instances -- 2.4.2 Experimental Results -- 2.5 Conclusion -- References 
505 8 |a 3 A Variable Block Insertion Heuristic for the Energy-Efficient Permutation Flowshop Scheduling with Makespan Criterion -- 3.1 Introduction -- 3.2 Problem Formulation -- 3.3 Energy-Efficient VBIH Algorithm -- 3.3.1 Initial Population -- 3.3.2 Energy-Efficient Block Insertion Procedure -- 3.3.3 Energy-Efficient Insertion Local Search -- 3.3.4 Energy-Efficient Uniform Crossover and Mutation -- 3.3.5 Archive Set -- 3.4 Computational Results -- 3.5 Conclusions -- References -- 4 Solving 0-1 Bi-Objective Multi-dimensional Knapsack Problems Using Binary Genetic Algorithm -- 4.1 Introduction 
505 8 |a 4.2 Literature Review -- 4.3 Problem Formulation -- 4.4 Bi-Objective BGA -- 4.5 Computational Results -- 4.6 Conclusion -- References -- 5 An Asynchronous Parallel Evolutionary Algorithm for Solving Large Instances of the Multi-objective QAP -- 5.1 Introduction -- 5.2 Related Works -- 5.3 The APM-MOEA Model -- 5.3.1 Global Search View of the Organizer -- 5.3.2 Asynchronous Communications -- 5.3.3 Control Islands -- 5.3.4 Local Search -- 5.4 Experimental Results -- 5.4.1 Performance Metrics -- 5.4.2 The GISMOO Algorithm -- 5.4.3 MQAP Instances -- 5.4.4 Experimental Conditions 
505 8 |a 5.4.5 Resolution of Small MQAP Instances -- 5.4.6 Resolution of Large MQAP Instances -- 5.5 Conclusion -- References -- 6 Learning from Prior Designs for Facility Layout Optimization -- 6.1 Introduction -- 6.2 Related Work -- 6.3 Facility Layout Model -- 6.4 Similarity Model -- 6.4.1 Probabilistic Layout Model -- 6.4.2 Estimation -- 6.5 Similarity in Layout Optimization -- 6.6 Experiments -- 6.7 Discussion -- References -- 7 Single-Objective Real-Parameter Optimization: Enhanced LSHADE-SPACMA Algorithm -- 7.1 Enhanced LSHADE with Semi-parameter Adaptation Hybrid with CMA-ES (ELSHADE-SPACMA) 
500 |a 7.1.1 LSHADE Algorithm. 
520 |a This book is a new contribution aiming to give some last research findings in the field of optimization and computing. This work is in the same field target than our two previous books published: Recent Developments in Metaheuristics and Metaheuristics for Production Systems, books in Springer Series in Operations Research/Computer Science Interfaces. The challenge with this work is to gather the main contribution in three fields, optimization technique for production decision, general development for optimization and computing method and wider spread applications. The number of researches dealing with decision maker tool and optimization method grows very quickly these last years and in a large number of fields. We may be able to read nice and worthy works from research developed in chemical, mechanical, computing, automotive and many other fields. 
500 |a Includes index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed February 18, 2021). 
650 0 |a Metaheuristics  |v Congresses. 
650 0 |a CAD/CAM systems  |v Congresses. 
650 7 |a CAD/CAM systems  |2 fast 
650 7 |a Metaheuristics  |2 fast 
655 7 |a proceedings (reports)  |2 aat 
655 7 |a Conference papers and proceedings  |2 fast 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congrès.  |2 rvmgf 
700 1 |a Yalaoui, Farouk. 
700 1 |a Amodeo, Lionel. 
700 1 |a Talbi, El-Ghazali,  |d 1965-  |1 https://id.oclc.org/worldcat/entity/E39PCjxPxHXw9RyP9hr9VXVYdP 
711 2 |a International Conference on Metaheuristics and Nature Inspired Computing  |n (7th :  |d 2018 :  |c Marrakesh, Morocco) 
758 |i has work:  |a Heuristics for optimization and learning (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGbq8y4jXVdk6mXRjdykym  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Yalaoui, Farouk.  |t Heuristics for Optimization and Learning.  |d Cham : Springer International Publishing AG, ©2020  |z 9783030589295 
830 0 |a Studies in computational intelligence ;  |v v. 906. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-58930-1  |y Click for online access 
903 |a SPRING-ROBOTICS2021 
994 |a 92  |b HCD