Nonuniformly hyperbolic attractors : geometric and probabilistic aspects / José F. Alves.

This monograph offers a coherent, self-contained account of the theory of Sinai-Ruelle-Bowen measures and decay of correlations for nonuniformly hyperbolic dynamical systems. A central topic in the statistical theory of dynamical systems, the book in particular provides a detailed exposition of the...

Full description

Saved in:
Bibliographic Details
Main Author: Alves, José F.
Format: eBook
Language:English
Published: Cham : Springer, 2020.
Series:Springer monographs in mathematics,
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1228153797
003 OCoLC
005 20250225213021.0
006 m o d
007 cr |n|||||||||
008 201229s2020 sz ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d SFB  |d OCLCF  |d UPM  |d UKBTH  |d EBLCP  |d OCLCO  |d OCL  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL  |d OCLCQ 
019 |a 1228046919  |a 1228846008  |a 1231613136  |a 1233071899 
020 |a 9783030628147  |q (electronic bk.) 
020 |a 3030628140  |q (electronic bk.) 
020 |z 3030628132 
020 |z 9783030628130 
024 7 |a 10.1007/978-3-030-62814-7  |2 doi 
035 |a (OCoLC)1228153797  |z (OCoLC)1228046919  |z (OCoLC)1228846008  |z (OCoLC)1231613136  |z (OCoLC)1233071899 
050 4 |a QA614.813 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBWR  |2 thema 
049 |a HCDD 
100 1 |a Alves, José F. 
245 1 0 |a Nonuniformly hyperbolic attractors :  |b geometric and probabilistic aspects /  |c José F. Alves. 
260 |a Cham :  |b Springer,  |c 2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a Springer Monographs in Mathematics,  |x 1439-7382 
520 |a This monograph offers a coherent, self-contained account of the theory of Sinai-Ruelle-Bowen measures and decay of correlations for nonuniformly hyperbolic dynamical systems. A central topic in the statistical theory of dynamical systems, the book in particular provides a detailed exposition of the theory developed by L.-S. Young for systems admitting induced maps with certain analytic and geometric properties. After a brief introduction and preliminary results, Chapters 3, 4, 6 and 7 provide essentially the same pattern of results in increasingly interesting and complicated settings. Each chapter builds on the previous one, apart from Chapter 5 which presents a general abstract framework to bridge the more classical expanding and hyperbolic systems explored in Chapters 3 and 4 with the nonuniformly expanding and partially hyperbolic systems described in Chapters 6 and 7. Throughout the book, the theory is illustrated with applications. A clear and detailed account of topics of current research interest, this monograph will be of interest to researchers in dynamical systems and ergodic theory. In particular, beginning researchers and graduate students will appreciate the accessible, self-contained presentation. 
505 0 |a 1 Introduction -- 2 Preliminaries -- 3 Expanding Structures -- 4 Hyperbolic Structures -- 5 Inducing Schemes -- 6 Nonuniformly Expanding Attractors -- 7 Partially Hyperbolic Attractors. 
504 |a Includes bibliographical references and index. 
650 0 |a Attractors (Mathematics) 
650 0 |a Differential equations, Hyperbolic. 
650 0 |a Ergodic theory. 
650 0 7 |a Ecuaciones diferenciales hiperbólicas  |2 embucm 
650 0 7 |a Teoría ergódica  |2 embucm 
650 7 |a Differential equations, Hyperbolic  |2 fast 
650 7 |a Attractors (Mathematics)  |2 fast 
650 7 |a Dynamics  |2 fast 
650 7 |a Ergodic theory  |2 fast 
650 7 |a Vibration  |2 fast 
776 0 8 |c Original  |z 3030628132  |z 9783030628130  |w (OCoLC)1198714579 
830 0 |a Springer monographs in mathematics,  |x 1439-7382 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-62814-7  |y Click for online access 
903 |a SPRING-MATH2020 
994 |a 92  |b HCD