Advancing parametric optimization : on multiparametric linear complementarity problems with parameters in general locations / Nathan Adelgren.

The theory presented in this work merges many concepts from mathematical optimization and real algebraic geometry. When unknown or uncertain data in an optimization problem is replaced with parameters, one obtains a multi-parametric optimization problem whose optimal solution comes in the form of a...

Full description

Saved in:
Bibliographic Details
Main Author: Adelgren, Nathan (Author)
Format: eBook
Language:English
Published: Cham : Springer, [2021]
Series:SpringerBriefs in optimization.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1239997042
003 OCoLC
005 20241006213017.0
006 m o d
007 cr nn||||mamaa
008 210121s2021 sz a ob 000 0 eng d
040 |a SFB  |b eng  |e rda  |e pn  |c SFB  |d GW5XE  |d YDX  |d EBLCP  |d OCLCO  |d OCLCF  |d UKAHL  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO  |d S9M 
019 |a 1232411393  |a 1235597773 
020 |a 9783030618216  |q (electronic bk.) 
020 |a 3030618218  |q (electronic bk.) 
020 |z 9783030618209 
020 |z 303061820X 
024 7 |a 10.1007/978-3-030-61821-6  |2 doi 
035 |a (OCoLC)1239997042  |z (OCoLC)1232411393  |z (OCoLC)1235597773 
050 4 |a QA402.5 
072 7 |a PBU  |2 bicssc 
072 7 |a MAT003000  |2 bisacsh 
072 7 |a PBU  |2 thema 
049 |a HCDD 
100 1 |a Adelgren, Nathan,  |e author. 
245 1 0 |a Advancing parametric optimization :  |b on multiparametric linear complementarity problems with parameters in general locations /  |c Nathan Adelgren. 
264 1 |a Cham :  |b Springer,  |c [2021] 
300 |a 1 online resource (xii, 113 pages) :  |b illustrations (chiefly color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a SpringerBriefs in optimization,  |x 2190-8354 
504 |a Includes bibliographical references. 
520 |a The theory presented in this work merges many concepts from mathematical optimization and real algebraic geometry. When unknown or uncertain data in an optimization problem is replaced with parameters, one obtains a multi-parametric optimization problem whose optimal solution comes in the form of a function of the parameters. The theory and methodology presented in this work allows one to solve both Linear Programs and convex Quadratic Programs containing parameters in any location within the problem data as well as multi-objective optimization problems with any number of convex quadratic or linear objectives and linear constraints. Applications of these classes of problems are extremely widespread, ranging from business and economics to chemical and environmental engineering. Prior to this work, no solution procedure existed for these general classes of problems except for the recently proposed algorithms. 
505 0 |a 1. Introduction -- 2. Background on mpLCP -- 3. Algebraic Properties of Invariancy Regions -- 4. Phase 2: Partitioning the Parameter Space -- 5. Phase 1: Determining an Initial Feasible Solution -- 6. Further Considerations -- 7. Assessment of Performance -- 8. Conclusion -- Appendix A. Tableaux for Example 2.1 -- Appendix B. Tableaux for Example 2.2 -- References. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed March 11, 2021). 
650 0 |a Mathematical optimization. 
650 0 |a Geometry, Algebraic. 
650 7 |a Optimización matemática  |2 embne 
650 7 |a Geometría algebraica  |2 embne 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Mathematical optimization  |2 fast 
776 0 |z 303061820X 
830 0 |a SpringerBriefs in optimization.  |x 2190-8354 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-61821-6  |y Click for online access 
903 |a SPRING-MATH2021 
994 |a 92  |b HCD