Geometric invariant theory, holomorphic vector bundles and the Harder-Narasimhan filtration / Alfonso Zamora Saiz, Ronald A. Zúñiga-Rojas.

This book introduces key topics on Geometric Invariant Theory, a technique to obtaining quotients in algebraic geometry with a good set of properties, through various examples. It starts from the classical Hilbert classification of binary forms, advancing to the construction of the moduli space of s...

Full description

Saved in:
Bibliographic Details
Main Authors: Zamora Saiz, Alfonso (Author), Zúñiga-Rojas, Ronald A. (Author)
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, [2021]
Series:SpringerBriefs in mathematics,
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1243349702
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
008 210327s2021 sz a ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCO  |d OCLCF  |d VT2  |d LIP  |d N$T  |d OCLCO  |d OCLCQ  |d OCLCO  |d COM  |d SFB  |d OCLCQ  |d OCLCO  |d S9M 
019 |a 1244621072  |a 1253412744 
020 |a 9783030678296  |q (electronic bk.) 
020 |a 3030678296  |q (electronic bk.) 
020 |a 9783030678302  |q (print) 
020 |a 303067830X 
020 |z 3030678288 
020 |z 9783030678289 
024 7 |a 10.1007/978-3-030-67829-6  |2 doi 
035 |a (OCoLC)1243349702  |z (OCoLC)1244621072  |z (OCoLC)1253412744 
050 4 |a QA201 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
049 |a HCDD 
100 1 |a Zamora Saiz, Alfonso,  |e author  |1 https://orcid.org/0000-0002-8340-5366 
245 1 0 |a Geometric invariant theory, holomorphic vector bundles and the Harder-Narasimhan filtration /  |c Alfonso Zamora Saiz, Ronald A. Zúñiga-Rojas. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2021] 
300 |a 1 online resource (xiii, 127 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
490 1 |a SpringerBriefs in mathematics,  |x 2191-8198 
520 |a This book introduces key topics on Geometric Invariant Theory, a technique to obtaining quotients in algebraic geometry with a good set of properties, through various examples. It starts from the classical Hilbert classification of binary forms, advancing to the construction of the moduli space of semistable holomorphic vector bundles, and to Hitchin's theory on Higgs bundles. The relationship between the notion of stability between algebraic, differential and symplectic geometry settings is also covered. Unstable objects in moduli problems -- a result of the construction of moduli spaces -- get specific attention in this work. The notion of the Harder-Narasimhan filtration as a tool to handle them, and its relationship with GIT quotients, provide instigating new calculations in several problems. Applications include a survey of research results on correspondences between Harder-Narasimhan filtrations with the GIT picture and stratifications of the moduli space of Higgs bundles. Graduate students and researchers who want to approach Geometric Invariant Theory in moduli constructions can greatly benefit from this reading, whose key prerequisites are general courses on algebraic geometry and differential geometry. 
505 0 |a Introduction -- Preliminaries -- Geometric Invariant Theory -- Moduli Space of Vector Bundles -- Unstability Correspondence -- Stratifications on the Moduli Space of Higgs Bundles. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed April 19, 2021). 
650 0 |a Invariants. 
650 0 |a Geometry, Algebraic. 
650 0 |a Moduli theory. 
650 7 |a Geometría algebraica  |2 embne 
650 0 7 |a Módulos, Teoría de  |2 embucm 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Invariants  |2 fast 
650 7 |a Moduli theory  |2 fast 
650 7 |a Geometria algebraica.  |2 thub 
650 7 |a Teoria de mòduls.  |2 thub 
650 7 |a Invariants.  |2 thub 
655 7 |a Llibres electrònics.  |2 thub 
700 1 |a Zúñiga-Rojas, Ronald A.,  |e author.  |1 https://orcid.org/0000-0003-3402-2526 
776 0 8 |i Print version:  |z 9783030678289  |w (OCoLC)1227383595 
830 0 |a SpringerBriefs in mathematics,  |x 2191-8198 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-67829-6  |y Click for online access 
903 |a SPRING-MATH2021 
994 |a 92  |b HCD