SN Video coding and web development. Machine learning with regression in Python / Springer.

In this video, you will learn regression techniques in Python using ordinary least squares, ridge, lasso, decision trees, and neural networks. We start by exploring a census dataset that captures sales from a business in various counties across the United States. We briefly explore the dataset befor...

Full description

Saved in:
Bibliographic Details
Other Authors: Keith, Michael (Speaker)
Format: Video
Language:English
Published: London, England : Springer Nature, 2020.
Series:SN Video Coding and Web Development
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cgm a2200000Mi 4500
001 on1245589573
003 OCoLC
005 20241006213017.0
006 m o c
007 cr |n||||||||a
007 vz |za|z|
008 210216s2020 enk045 e o vneng d
040 |a ALSTP  |b eng  |e rda  |c ALSTP  |d OCLCO  |d OCLCF  |d UAB  |d OCLCO  |d CJT  |d OCLCQ 
019 |a 1373457525 
020 |z 9781484265833 
035 |a (OCoLC)1245589573  |z (OCoLC)1373457525 
050 4 |a Internet Access  |b AEGMCT 
049 |a HCDD 
245 0 0 |a SN Video coding and web development.  |p Machine learning with regression in Python /  |c Springer. 
246 3 0 |a Machine learning with regression in Python 
246 3 |a Springer Nature video coding and web development 
264 1 |a London, England :  |b Springer Nature,  |c 2020. 
300 |a 1 online resource (45 minutes) 
306 |a 004445 
336 |a two-dimensional moving image  |b tdi  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
337 |a video  |b v  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a video file  |2 rda 
490 0 |a SN Video Coding and Web Development 
500 |a Title from resource description page (viewed March 9, 2021). 
520 |a In this video, you will learn regression techniques in Python using ordinary least squares, ridge, lasso, decision trees, and neural networks. We start by exploring a census dataset that captures sales from a business in various counties across the United States. We briefly explore the dataset before moving onto model assumptions and feature engineering. We then implement a linear regression, which is a simple model that is easy to interpret, then move through more complex models to see what best makes predictions on our dataset. To avoid overfitting, we split our dataset and to optimize predictions, we tune hyperparameters with k-folds cross validation. We move through models that are more complex until we arrive at a neural network model. We then use the model with the lowest error metrics on the test dataset and make predictions on a new dataset. Using these predictions, we make a recommendation to the company's shareholders who want to expand the business about which counties to expand to next. This modeling process will be done in Python 3 on a Jupyter notebook, so it's a good idea to have Anaconda installed on your computer so you can follow along. We will structure our notebook to be easy-to-read by others on our team who may want to expand on our analysis. 
546 |a In English. 
650 0 |a Python (Computer program language) 
650 0 |a Machine learning. 
650 0 |a Artificial intelligence. 
650 0 |a Regression analysis. 
650 7 |a artificial intelligence.  |2 aat 
650 7 |a Artificial intelligence.  |2 fast  |0 (OCoLC)fst00817247 
650 7 |a Machine learning.  |2 fast  |0 (OCoLC)fst01004795 
650 7 |a Python (Computer program language)  |2 fast  |0 (OCoLC)fst01084736 
650 7 |a Regression analysis.  |2 fast  |0 (OCoLC)fst01432090 
655 7 |a Instructional films.  |2 fast  |0 (OCoLC)fst01726236 
655 7 |a Instructional films.  |2 lcgft 
655 7 |a Films de formation.  |2 rvmgf 
700 1 |a Keith, Michael,  |e speaker. 
710 2 |a Springer Nature (Firm),  |e publisher. 
776 0 8 |i Original version:  |z 9781484265833 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=http://www.aspresolver.com/aspresolver.asp?MARC;5109862  |y Click for online access 
903 |a ASP-AV 
994 |a 92  |b HCD