Quantum field theory and critical phenomena / Jean Zinn-Justin.

"Introduced as a quantum extension of Maxwell's classical theory, quantum electrodynamic (QED) has been the first example of a quantum field theory (QFT). Eventually, QFT has become the framework for the discussion of all fundamental interactions at the microscopic scale except, possibly,...

Full description

Saved in:
Bibliographic Details
Main Author: Zinn-Justin, Jean (Author)
Format: eBook
Language:English
Published: Oxford : Oxford University Press, 2021.
Edition:Fifth edition.
Series:International series of monographs on physics (Oxford, England) ; 171.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1245671763
003 OCoLC
005 20250225213021.0
006 m o d
007 cr |||||||||||
008 210410t20212021enk ob 001 0 eng d
040 |a EBLCP  |b eng  |e rda  |e pn  |c EBLCP  |d UKAHL  |d STBDS  |d CUV  |d S2H  |d OCLCF  |d OH1  |d OCLCO  |d IUL  |d OCLCO  |d TXC  |d OCLCO  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO  |d UKKRT 
019 |a 1256696611  |a 1258902718  |a 1261388555  |a 1296824664  |a 1296891395  |a 1298436216 
020 |a 9780192571618 
020 |a 0192571613 
020 |z 9780198834625 (hbk.)  |q (e-book) 
020 |a 9780191872723  |q (ebook) 
020 |a 0191872725 
020 |z 0198834624 
035 |a (OCoLC)1245671763  |z (OCoLC)1256696611  |z (OCoLC)1258902718  |z (OCoLC)1261388555  |z (OCoLC)1296824664  |z (OCoLC)1296891395  |z (OCoLC)1298436216 
050 4 |a QC174.45  |b .Z56 2021 
049 |a HCDD 
100 1 |a Zinn-Justin, Jean,  |e author. 
245 1 0 |a Quantum field theory and critical phenomena /  |c Jean Zinn-Justin. 
250 |a Fifth edition. 
264 1 |a Oxford :  |b Oxford University Press,  |c 2021. 
264 4 |c ©2021 
300 |a 1 online resource (1074 pages). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a data file  |2 rda 
490 1 |a International Series of Monographs on Physics ;  |v v.171 
588 |a Description based on online resource; title from PDF title page (Oxford Scholarship Online, viewed on October 21, 2021). 
520 |a "Introduced as a quantum extension of Maxwell's classical theory, quantum electrodynamic (QED) has been the first example of a quantum field theory (QFT). Eventually, QFT has become the framework for the discussion of all fundamental interactions at the microscopic scale except, possibly, gravity. More surprisingly, it has also provided a framework for the understanding of second order phase transitions in statistical mechanics. In fact, as hopefully this work illustrates, QFT is the natural framework for the discussion of most systems involving an infinite number of degrees of freedom with local couplings. These systems range from cold Bose gases at the condensation temperature (about ten nanokelvin) to conventional phase transitions (from a few degrees to several hundred) and high energy particle physics up to a TeV, altogether more than twenty orders of magnitude in the energy scale. Therefore, although excellent textbooks about QFT had already been published, I thought, many years ago, that it might not be completely worthless to present a work in which the strong formal relations between particle physics and the theory of critical phenomena are systematically emphasized. This option explains some of the choices made in the presentation. A formulation in terms of field integrals has been adopted to study the properties of QFT. The language of partition and correlation functions has been used throughout, even in applications of QFT to particle physics. Renormalization and renormalization group (RG) properties are systematically discussed. The notion of effective field theory (EFT) and the emergence of renormalizable theories are described. The consequences for fine-tuning and triviality issue are emphasized. This fifth edition has been updated and fully revised"--Publisher's description. 
504 |a Includes bibliographical references and index. 
505 0 |a Gaussian integrals. Algebraic preliminaries -- Euclidean path integrals and quantum mechanics -- Quantum mechanics: Path integrals in phase space -- Quantum statistical physics: Functional integration formalism -- Quantum evolution: From particles to fields -- The neutral relativistic scalar field -- Perturbative quantum field theory: Algebraic methods -- Ultraviolet divergences: Effective quantum field theory -- Introduction to renormalization theory and renormalization group -- Dimensional continuation, regularization. Minimal subtraction, RG functions -- Renormalization of local polynomials. Short distance expansion -- Relativistic fermions: Introduction -- Symmetries, chiral symmetry breaking and renormalization -- Critical phenomena: General considerations. Mean-field theory -- The renormalization group approach: The critical theory near dimension 4 -- Critical domain: Universality, E-expansion -- Critical phenomena: Corrections to scaling behaviour -- O(N)-symmetric vector models for N large -- The non-linear sigma-model near two dimensions: Phase structure -- Gross-Neveu-Yukawa and Gross-Neveu models -- Abelian gauge theories: The framework of quantum electrodynamics -- Non-Abelian gauge theories: Introduction -- The Standard Model of fundamental interactions -- Large momentum behaviour in quantum field theory -- Lattice gauge theories: Introduction -- BRST symmetry, gauge theories: Zinn-Justin equation and renormalization -- Supersymmetric quantum field theory: Introduction -- Elements of classical and quantum gravity -- Generalized non-linear sigma-models in two dimensions -- A few two-dimensional solvable quantum field theories -- O(2) spin model and Kosterlitz-Thouless's phase transition -- Finite-size effects in field theory. Scaling behaviour -- Quantum field theory at finite temperature: Equilibrium properties -- Stochastic differential equations: Langevin, Fokker-Planck equations -- Langevin field equations, properties and renormalization -- Critical dynamics and renormalization group -- Instantons in quantum mechanics -- Metastable vacua in quantum field theory -- Degenerate classical minima and instantons -- Perturbative expansion at large orders -- Critical exponents and equation of state from series summation -- Multi-instantons in quantum mechanics. 
650 0 |a Quantum field theory. 
650 0 |a Critical phenomena (Physics) 
650 0 |a Renormalization (Physics) 
650 7 |a Critical phenomena (Physics)  |2 fast 
650 7 |a Quantum field theory  |2 fast 
650 7 |a Renormalization (Physics)  |2 fast 
776 0 8 |i Print version:  |a Zinn-Justin, Jean.  |t Quantum field theory and critical phenomena.  |b Fifth edition.  |d Oxford : Oxford University Press, 2021  |z 9780198834625  |w (OCoLC)1242744527 
830 0 |a International series of monographs on physics (Oxford, England) ;  |v 171. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://academic.oup.com/book/43933  |y Click for online access 
903 |a OUP-SOEBA 
994 |a 92  |b HCD