Computational engineering -- introduction to numerical methods / Michael Schäfer.

Numerical simulation methods in all engineering disciplines gains more and more importance. The successful and efficient application of such tools requires certain basic knowledge about the underlying numerical techniques. The text gives a practice-oriented introduction in modern numerical methods a...

Full description

Saved in:
Bibliographic Details
Main Author: Schäfer, Michael, 1960 January 15-
Format: eBook
Language:English
Published: Cham : Springer, ©2022.
Edition:Second edition.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Intro
  • Preface to the Second Edition
  • Preface to the First Edition
  • Contents
  • 1 Introduction
  • 1.1 Usefulness of Numerical Investigations
  • 1.2 Development of Numerical Methods
  • 1.3 Characterization of Numerical Methods
  • 2 Modeling of Continuum Mechanical Problems
  • 2.1 Kinematics
  • 2.2 Basic Conservation Equations
  • 2.2.1 Mass Conservation
  • 2.2.2 Momentum Conservation
  • 2.2.3 Moment of Momentum Conservation
  • 2.2.4 Energy Conservation
  • 2.2.5 Material Laws
  • 2.3 Scalar Problems
  • 2.3.1 Simple Field Problems
  • 2.3.2 Heat Transfer Problems
  • 2.4 Structural Mechanics Problems
  • 2.4.1 Linear Elasticity
  • 2.4.2 Bars and Beams
  • 2.4.3 Disks and Plates
  • 2.4.4 Linear Thermo-Elasticity
  • 2.4.5 Hyperelasticity
  • 2.5 Fluid Mechanical Problems
  • 2.5.1 Incompressible Flows
  • 2.5.2 Inviscid Flows
  • 2.6 Aeroacoustics Problems
  • 2.7 Coupled Fluid-Solid Problems
  • 2.7.1 Modeling
  • 2.7.2 Examples of Applications
  • 3 Discretization of Problem Domain
  • 3.1 Description of Problem Geometry
  • 3.2 Numerical Grids
  • 3.2.1 Grid Types
  • 3.2.2 Grid Structure
  • 3.3 Generation of Structured Grids
  • 3.3.1 Algebraic Grid Generation
  • 3.3.2 Elliptic Grid Generation
  • 3.4 Generation of Unstructured Grids
  • 3.4.1 Advancing Front Methods
  • 3.4.2 Delaunay Triangulations
  • 4 Finite-Volume Methods
  • 4.1 General Methodology
  • 4.2 Approximation of Surface and Volume Integrals
  • 4.3 Discretization of Convective Fluxes
  • 4.3.1 Central Differences
  • 4.3.2 Upwind Techniques
  • 4.3.3 Flux-Blending Technique
  • 4.4 Discretization of Diffusive Fluxes
  • 4.5 Non-Cartesian Grids
  • 4.6 Discrete Transport Equation
  • 4.7 Treatment of Boundary Conditions
  • 4.8 Algebraic System of Equations
  • 4.9 Numerical Example
  • 5 Finite-Element Methods
  • 5.1 Galerkin Method
  • 5.2 Finite-Element Discretization
  • 5.3 One-Dimensional Linear Elements
  • 5.3.1 Discretization
  • 5.3.2 Global and Local View
  • 5.4 Practical Realization
  • 5.4.1 Assembling of Equation Systems
  • 5.4.2 Computation of Element Contributions
  • 5.4.3 Numerical Example
  • 5.5 One-Dimensional Cubic Elements
  • 5.5.1 Discretization
  • 5.5.2 Numerical Example
  • 5.6 Two-Dimensional Elements
  • 5.6.1 Variable Transformation for Triangular Elements
  • 5.6.2 Linear Triangular Elements
  • 5.6.3 Numerical Example
  • 5.6.4 Bilinear Parallelogram Elements
  • 5.6.5 Other Two-Dimensional Elements
  • 5.7 Numerical Integration
  • 6 Other Discretization Methods
  • 6.1 Spectral Methods
  • 6.1.1 Chebyshev Ansatz
  • 6.1.2 Error
  • 6.1.3 Extensions
  • 6.1.4 Numerical Examples
  • 6.2 Mesh-Free Methods
  • 6.3 Discontinuous Galerkin Methods
  • 7 Time Discretization
  • 7.1 Basics
  • 7.2 Explicit Methods
  • 7.3 Implicit Methods
  • 7.4 Numerical Example
  • 8 Solution of Algebraic Systems of Equations
  • 8.1 Linear Systems
  • 8.1.1 Direct Solution Methods
  • 8.1.2 Basic Iterative Methods
  • 8.1.3 ILU Methods
  • 8.1.4 Convergence of Iterative Methods