Canard cycles : from birth to transition / Peter De Maesschalck, Freddy Dumortier, Robert Roussarie.

This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles...

Full description

Saved in:
Bibliographic Details
Main Authors: De Maesschalck, Peter (Author), Dumortier, Freddy (Author), Roussarie, Robert H. (Author)
Format: eBook
Language:English
Published: Cham : Springer, [2021]
Series:Ergebnisse der Mathematik und ihrer Grenzgebiete ; 3. Folge, Bd. 73.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1263663173
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
008 210812s2021 sz a ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCO  |d OCLCF  |d UKAHL  |d OCLCQ  |d OCLCO  |d COM  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
019 |a 1263873192  |a 1273020913 
020 |a 9783030792336  |q (electronic bk.) 
020 |a 3030792331  |q (electronic bk.) 
020 |z 9783030792329 
020 |z 3030792323 
024 7 |a 10.1007/978-3-030-79233-6  |2 doi 
035 |a (OCoLC)1263663173  |z (OCoLC)1263873192  |z (OCoLC)1273020913 
050 4 |a QA372  |b .D4 2021 
072 7 |a PBWR  |2 bicssc 
072 7 |a MAT034000  |2 bisacsh 
072 7 |a PBWR  |2 thema 
049 |a HCDD 
100 1 |a De Maesschalck, Peter,  |e author. 
245 1 0 |a Canard cycles :  |b from birth to transition /  |c Peter De Maesschalck, Freddy Dumortier, Robert Roussarie. 
264 1 |a Cham :  |b Springer,  |c [2021] 
264 4 |c ©2021 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge / Series of modern surveys in mathematics,  |x 0071-1136 ;  |v volume 73 
504 |a Includes bibliographical references and index. 
520 |a This book offers the first systematic account of canard cycles, an intriguing phenomenon in the study of ordinary differential equations. The canard cycles are treated in the general context of slow-fast families of two-dimensional vector fields. The central question of controlling the limit cycles is addressed in detail and strong results are presented with complete proofs. In particular, the book provides a detailed study of the structure of the transitions near the critical set of non-isolated singularities. This leads to precise results on the limit cycles and their bifurcations, including the so-called canard phenomenon and canard explosion. The book also provides a solid basis for the use of asymptotic techniques. It gives a clear understanding of notions like inner and outer solutions, describing their relation and precise structure. The first part of the book provides a thorough introduction to slow-fast systems, suitable for graduate students. The second and third parts will be of interest to both pure mathematicians working on theoretical questions such as Hilbert's 16th problem, as well as to a wide range of applied mathematicians looking for a detailed understanding of two-scale models found in electrical circuits, population dynamics, ecological models, cellular (FitzHugh-Nagumo) models, epidemiological models, chemical reactions, mechanical oscillators with friction, climate models, and many other models with tipping points. 
505 0 |a Part I Basic Notions -- 1 Basic Definitions and Notions -- 2 Local Invariants and Normal Forms -- 3 The Slow Vector Field -- 4 Slow-Fast Cycles -- 5 The Slow Divergence Integral -- 6 Breaking Mechanisms -- 7 Overview of Known Results -- Part II Technical Tools -- 8 Blow-Up of Contact Points -- 9 Center Manifolds -- 10 Normal Forms -- 11 Smooth Functions on Admissible Monomials and More -- 12 Local Transition Maps -- Part III Results and Open Problems -- 13 Ordinary Canard Cycles -- 14 Transitory Canard Cycles with Slow-Fast Passage Through a Jump Point -- 15 Transitory Canard Cycles with Fast-Fast Passage Through a Jump Point -- 16 Outlook and Open Problems -- Index -- References. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed August 19, 2021). 
650 0 |a Singular perturbations (Mathematics) 
650 0 |a Vector fields. 
650 0 |a Bifurcation theory. 
650 7 |a Campos vectoriales  |2 embne 
650 0 7 |a Perturbaciones singulares (Matemáticas)  |2 embucm 
650 7 |a Bifurcation theory  |2 fast 
650 7 |a Singular perturbations (Mathematics)  |2 fast 
650 7 |a Vector fields  |2 fast 
700 1 |a Dumortier, Freddy,  |e author. 
700 1 |a Roussarie, Robert H.,  |e author. 
758 |i has work:  |a Canard cycles (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFJqBQFyf66FQKKHvpkmBd  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a De Maesschalck, Peter.  |t Canard cycles.  |d Cham : Springer, [2021]  |z 3030792323  |z 9783030792329  |w (OCoLC)1252415084 
830 0 |a Ergebnisse der Mathematik und ihrer Grenzgebiete ;  |v 3. Folge, Bd. 73.  |x 0071-1136 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-79233-6  |y Click for online access 
903 |a SPRING-MATH2021 
994 |a 92  |b HCD