Zero product determined algebras / Matej Brešar.

This book provides a concise survey of the theory of zero product-determined algebras, which has been developed over the last 15 years. It is divided into three parts. The first part presents the purely algebraic branch of the theory, the second part presents the functional analytic branch, and the...

Full description

Saved in:
Bibliographic Details
Main Author: Brešar, Matej
Format: eBook
Language:English
Published: Cham, Switzerland : Birkhäuser, 2021.
Series:Frontiers in mathematics.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1265456112
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
008 210828s2021 sz o 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCO  |d NFS  |d OCLCF  |d N$T  |d OCLCQ  |d COM  |d OCLCQ  |d OCLCO  |d S9M  |d OCLCL 
019 |a 1265461598  |a 1303273520 
020 |a 9783030802424  |q (electronic bk.) 
020 |a 3030802426  |q (electronic bk.) 
020 |z 3030802418 
020 |z 9783030802417 
024 7 |a 10.1007/978-3-030-80242-4  |2 doi 
035 |a (OCoLC)1265456112  |z (OCoLC)1265461598  |z (OCoLC)1303273520 
050 4 |a QA326 
072 7 |a MAT002000  |2 bisacsh 
049 |a HCDD 
100 1 |a Brešar, Matej. 
245 1 0 |a Zero product determined algebras /  |c Matej Brešar. 
260 |a Cham, Switzerland :  |b Birkhäuser,  |c 2021. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Frontiers in Mathematics 
505 0 |a Intro -- Preface -- Contents -- Part I Algebraic Theory -- 1 Zero Product Determined Nonassociative Algebras -- 1.1 The Definition of a zpd Nonassociative Algebra -- 1.2 Symmetrically zpd Nonassociative Algebras -- 1.3 Stability Under Algebraic Constructions -- 2 Zero Product Determined Rings and Algebras -- 2.1 zpd Rings -- 2.2 Examples and Non-examples of zpd Algebras -- 2.3 The Finite-Dimensional Case -- 3 Zero Lie/Jordan Product Determined Algebras -- 3.1 Lie Algebras and Jordan Algebras -- 3.2 zLpd Algebras -- 3.3 zJpd Algebras -- Part II Analytic Theory 
505 8 |a 4 Zero Product Determined Nonassociative Banach Algebras -- 4.1 Characters and the Limitations of the Algebraic Approach -- 4.2 The Definition of a zpd Nonassociative Banach Algebra -- 4.3 Point Derivations -- 5 Zero Product Determined Banach Algebras -- 5.1 Property B -- 5.2 Stability Under Analytic Constructions -- 5.3 Examples and Non-examples of zpd Banach Algebras -- 6 Zero Lie/Jordan Product Determined Banach Algebras -- 6.1 The Condition xy=yx=0 -- 6.2 zLpd Banach Algebras -- 6.3 zJpd Banach Algebras -- Part III Applications -- 7 Homomorphisms and Related Maps 
505 8 |a 7.1 Zero Product Preserving Maps -- 7.2 Commutativity Preserving Maps -- 7.3 Jordan Homomorphisms -- 8 Derivations and Related Maps -- 8.1 Characterizing Derivations by Action on Zero Products -- 8.2 Local Derivations -- 8.3 Derivations and Quasinilpotent Elements -- 9 Miscellany -- 9.1 Commutators and Special-Type Elements -- 9.2 Orthogonality Conditions on n-Linear Maps -- 9.3 Nonassociative Products of Matrices -- References -- Index 
520 |a This book provides a concise survey of the theory of zero product-determined algebras, which has been developed over the last 15 years. It is divided into three parts. The first part presents the purely algebraic branch of the theory, the second part presents the functional analytic branch, and the third part discusses various applications. The book is intended for researchers and graduate students in ring theory, Banach algebra theory, and nonassociative algebra. 
650 0 |a Banach algebras. 
650 0 7 |a Banach, Álgebras de  |2 embucm 
650 7 |a Banach algebras  |2 fast 
758 |i has work:  |a Zero product determined algebras (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGy7wdWKGR7mrHxX6CPKHP  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |c Original  |z 3030802418  |z 9783030802417  |w (OCoLC)1255174326 
830 0 |a Frontiers in mathematics. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-80242-4  |y Click for online access 
903 |a SPRING-MATH2021 
994 |a 92  |b HCD