Quadratic number fields / Franz Lemmermeyer.

This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit...

Full description

Saved in:
Bibliographic Details
Main Author: Lemmermeyer, Franz, 1962- (Author)
Format: eBook
Language:English
German
Published: Cham : Springer, [2021]
Series:Springer undergraduate mathematics series.
Subjects:
Online Access:Click for online access
Uniform Title:Quadratische Zahlkörper.

MARC

LEADER 00000cam a2200000 i 4500
001 on1268683959
003 OCoLC
005 20241006213017.0
006 m o d
007 cr |n|||||||||
008 210922s2021 sz a ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d OCLCO  |d EBLCP  |d OCLCF  |d UKAHL  |d OCLCQ  |d COM  |d OCLCO  |d SFB  |d OCLCQ  |d S9M  |d OCLCL 
020 |a 9783030786526  |q (electronic bk.) 
020 |a 3030786528  |q (electronic bk.) 
020 |z 9783030786519 
020 |z 303078651X 
024 7 |a 10.1007/978-3-030-78652-6  |2 doi 
035 |a (OCoLC)1268683959 
041 1 |a eng  |h ger 
050 4 |a QA247  |b .L3613 2021 
072 7 |a PBH  |2 bicssc 
072 7 |a MAT022000  |2 bisacsh 
072 7 |a PBH  |2 thema 
049 |a HCDD 
100 1 |a Lemmermeyer, Franz,  |d 1962-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PBJhhmCRb3jxkxXw9xGhPwC 
240 1 0 |a Quadratische Zahlkörper.  |l English 
245 1 0 |a Quadratic number fields /  |c Franz Lemmermeyer. 
264 1 |a Cham :  |b Springer,  |c [2021] 
264 4 |c ©2021 
300 |a 1 online resource :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Springer undergraduate mathematics series,  |x 2197-4144 
546 |a Translated from German. 
504 |a Includes bibliographical references and indexes. 
520 |a This undergraduate textbook provides an elegant introduction to the arithmetic of quadratic number fields, including many topics not usually covered in books at this level. Quadratic fields offer an introduction to algebraic number theory and some of its central objects: rings of integers, the unit group, ideals and the ideal class group. This textbook provides solid grounding for further study by placing the subject within the greater context of modern algebraic number theory. Going beyond what is usually covered at this level, the book introduces the notion of modularity in the context of quadratic reciprocity, explores the close links between number theory and geometry via Pell conics, and presents applications to Diophantine equations such as the Fermat and Catalan equations as well as elliptic curves. Throughout, the book contains extensive historical comments, numerous exercises (with solutions), and pointers to further study. Assuming a moderate background in elementary number theory and abstract algebra, Quadratic Number Fields offers an engaging first course in algebraic number theory, suitable for upper undergraduate students. 
505 0 |a 1. Prehistory -- 2 Quadratic Number Fields -- 3 The Modularity Theorem -- 4 Divisibility in Integral Domains -- 5 Arithmetic in some Quadratic Number Fields -- 6 Ideals in Quadratic Number Fields -- 7 The Pell Equation -- 8 Catalan's Equation -- 9 Ambiguous Ideal Classes and Quadratic Reciprocity -- 10 Quadratic Gauss Sums -- A Computing with Pari and Sage -- B Solutions -- Bibliography -- Name Index -- Subject Index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed September 23, 2021). 
650 0 |a Quadratic fields. 
650 0 7 |a Cuerpos cuadráticos  |2 embucm 
650 7 |a Quadratic fields  |2 fast 
650 7 |a Cossos algebraics.  |2 thub 
655 7 |a Llibres electrònics.  |2 thub 
758 |i has work:  |a Quadratic number fields (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCH8b6qRWHXGQBxMbC9vT73  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |c Original  |z 303078651X  |z 9783030786519  |w (OCoLC)1252413424 
830 0 |a Springer undergraduate mathematics series.  |x 2197-4144 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-78652-6  |y Click for online access 
903 |a SPRING-MATH2021 
994 |a 92  |b HCD