An introduction to Bayesian inference, methods and computation / Nick Heard.

These lecture notes provide a rapid, accessible introduction to Bayesian statistical methods. The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advance...

Full description

Saved in:
Bibliographic Details
Main Author: Heard, Nicholas (Author)
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, 2021.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1280127782
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu|||unuuu
008 211022s2021 sz a ob 001 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d EBLCP  |d DCT  |d OCLCF  |d UKAHL  |d OCLCO  |d OCLCQ  |d COM  |d N$T  |d OCLCO  |d OCLCQ  |d AUD  |d OCLCQ  |d S9M  |d OCLCQ  |d OCLCL 
019 |a 1277278646  |a 1280046152  |a 1280105334  |a 1287763880 
020 |a 9783030828080  |q (electronic bk.) 
020 |a 3030828085  |q (electronic bk.) 
020 |z 9783030828073  |q (print) 
020 |z 3030828077 
024 7 |a 10.1007/978-3-030-82808-0  |2 doi 
035 |a (OCoLC)1280127782  |z (OCoLC)1277278646  |z (OCoLC)1280046152  |z (OCoLC)1280105334  |z (OCoLC)1287763880 
037 |b Springer 
050 4 |a QA279.5 
072 7 |a PBTB  |2 bicssc 
072 7 |a MAT029010  |2 bisacsh 
072 7 |a PBTB  |2 thema 
049 |a HCDD 
100 1 |a Heard, Nicholas,  |e author. 
245 1 3 |a An introduction to Bayesian inference, methods and computation /  |c Nick Heard. 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2021. 
300 |a 1 online resource (xii, 169 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
505 0 |a Uncertainty and Decisions -- Prior and Likelihood Representation -- Graphical Modeling -- Parametric Models -- Computational Inference -- Bayesian Software Packages -- Model choice -- Linear Models -- Nonparametric Models -- Nonparametric Regression -- Clustering and Latent Factor Models -- Conjugate Parametric Models. 
504 |a Includes bibliographical references and index. 
520 |a These lecture notes provide a rapid, accessible introduction to Bayesian statistical methods. The course covers the fundamental philosophy and principles of Bayesian inference, including the reasoning behind the prior/likelihood model construction synonymous with Bayesian methods, through to advanced topics such as nonparametrics, Gaussian processes and latent factor models. These advanced modelling techniques can easily be applied using computer code samples written in Python and Stan which are integrated into the main text. Importantly, the reader will learn methods for assessing model fit, and to choose between rival modelling approaches. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed October 22, 2021). 
650 0 |a Bayesian statistical decision theory. 
650 7 |a Estadística bayesiana  |2 embne 
650 7 |a Bayesian statistical decision theory  |2 fast 
758 |i has work:  |a An introduction to Bayesian inference, methods and computation (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCGYJGKPdK9Jd8RYRWXvv9C  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Heard, Nicholas.  |t Introduction to Bayesian inference, methods and computation.  |d Cham, Switzerland : Springer, 2021  |z 3030828077  |z 9783030828073  |w (OCoLC)1259046207 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-82808-0  |y Click for online access 
903 |a SPRING-MATH2021 
994 |a 92  |b HCD