Nonlinear dimensionality reduction techniques : a data structure preservation approach / Sylvain Lespinats, Benoit Colange, Denys Dutykh.

This book proposes tools for analysis of multidimensional and metric data, by establishing a state-of-the-art of the existing solutions and developing new ones. It mainly focuses on visual exploration of these data by a human analyst, relying on a 2D or 3D scatter plot display obtained through Dimen...

Full description

Saved in:
Bibliographic Details
Main Authors: Lespinats, Sylvain (Author), Colange, Benoit (Author), Dutykh, Denys (Author)
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, [2022]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1287617083
003 OCoLC
005 20241006213017.0
006 m o d
007 cr un|---aucuu
008 211206s2022 sz ob 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCF  |d OCLCO  |d DCT  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCQ  |d AUD  |d OCLCO  |d S9M 
019 |a 1287675173  |a 1287892379  |a 1287920265  |a 1288216997  |a 1294367498 
020 |a 9783030810269  |q (electronic bk.) 
020 |a 3030810267  |q (electronic bk.) 
020 |z 3030810259 
020 |z 9783030810252 
024 7 |a 10.1007/978-3-030-81026-9  |2 doi 
035 |a (OCoLC)1287617083  |z (OCoLC)1287675173  |z (OCoLC)1287892379  |z (OCoLC)1287920265  |z (OCoLC)1288216997  |z (OCoLC)1294367498 
037 |b Springer 
050 4 |a QA278.2 
072 7 |a UYQM  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQM  |2 thema 
049 |a HCDD 
100 1 |a Lespinats, Sylvain,  |e author. 
245 1 0 |a Nonlinear dimensionality reduction techniques :  |b a data structure preservation approach /  |c Sylvain Lespinats, Benoit Colange, Denys Dutykh. 
260 |a Cham, Switzerland :  |b Springer,  |c [2022] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file 
347 |b PDF 
505 0 |a 1 Data science context -- 1.1 Data in a metric space -- 1.1.1 Measuring dissimilarities and similarities -- 1.1.2 Neighbourhood ranks -- 1.1.3 Embedding space notations -- 1.1.4 Multidimensional data -- 1.1.5 Sequence data -- 1.1.6 Network data -- 1.1.7 A few multidimensional datasets -- 1.2 Automated tasks -- 1.2.1 Underlying distribution -- 1.2.2 Category identification -- 1.2.3 Data manifold analysis -- 1.2.4 Model learning -- 1.2.5 Regression -- 1.3 Visual exploration -- 1.3.1 Human in the loop using graphic variables -- 1.3.2 Spatialization and Gestalt principles -- 1.3.3 Scatter plots -- 1.3.4 Parallel coordinates -- 1.3.5 Colour coding -- 1.3.6 Multiple coordinated views and visual interaction -- 1.3.7 Graph drawing -- 2 Intrinsic dimensionality -- 2.1 Curse of dimensionality -- 2.1.1 Data sparsity -- 2.1.2 Norm concentration -- 2.2 ID estimation -- 2.2.1 Covariance-based approaches -- 2.2.2 Fractal approaches -- 2.2.3 Towards local estimation -- 2.3 TIDLE -- 2.3.1 Gaussian mixture modelling -- 2.3.2 Test of TIDLE on a two clusters case -- 3 Map evaluation -- 3.1 Objective and practical indicators -- 3.1.1 Subjectivity of indicators -- 3.1.2 User studies on specific tasks -- 3.2 Unsupervised global evaluation -- 3.2.1 Types of distortions -- 3.2.2 Link between distortions and mapping continuity -- 3.2.3 Reasons of distortions ubiquity -- 3.2.4 Scalar indicators -- 3.2.5 Aggregation -- 3.2.6 Diagrams -- 3.3 Class-aware indicators -- 3.3.1 Class separation and aggregation -- 3.3.2 Comparing scores between the two spaces -- 3.3.3 Class cohesion and distinction -- 3.3.4 The case of one cluster per class -- 4 Map interpretation -- 4.1 Axes recovery -- 4.1.1 Linear case: biplots -- 4.1.2 Non-linear case -- 4.2 Local evaluation -- 4.2.1 Point-wise aggregation -- 4.2.2 One to many relations with focus point -- 4.2.3 Many to many relations -- 4.3 MING -- 4.3.1 Uniform formulation of rank-based indicator -- 4.3.2 MING graphs -- 4.3.3 MING analysis for a toy dataset -- 4.3.4 Impact of MING parameters -- 4.3.5 Visual clutter -- 4.3.6 Oil flow -- 4.3.7 COIL-20 dataset -- 4.3.8 MING perspectives -- 5 Unsupervised DR -- 5.1 Spectral projections -- 5.1.1 Principal Component Analysis -- 5.1.2 Classical MultiDimensional Scaling -- 5.1.3 Kernel methods: Isompap, KPCA, LE -- 5.2 Non-linear MDS -- 5.2.1 Metric MultiDimensional Scaling -- 5.2.2 Non-metric MultiDimensional Scaling -- 5.3 Neighbourhood Embedding -- 5.3.1 General principle: SNE -- 5.3.2 Scale setting -- 5.3.3 Divergence choice: NeRV and JSE -- 5.3.4 Symmetrization -- 5.3.5 Solving the crowding problem: tSNE -- 5.3.6 Kernel choice -- 5.3.7 Adaptive Student Kernel Imbedding -- 5.4 Graph layout -- 5.4.1 Force directed graph layout: Elastic Embedding -- 5.4.2 Probabilistic graph layout: LargeVis -- 5.4.3 Topological method UMAP -- 5.5 Artificial neural networks -- 5.5.1 Auto-encoders -- 5.5.2 IVIS -- 6 Supervised DR -- 6.1 Types of supervision -- 6.1.1 Full supervision -- 6.1.2 Weak supervision -- 6.1.3 Semi-supervision -- 6.2 Parametric with class purity -- 6.2.1 Linear Discriminant Analysis -- 6.2.2 Neighbourhood Component Analysis -- 6.3 Metric learning -- 6.3.1 Mahalanobis distances -- 6.3.2 Riemannian metric -- 6.3.3 Direct distances transformation -- 6.3.4 Similarities learning -- 6.3.5 Metric learning limitations -- 6.4 Class adaptive scale -- 6.5 Classimap -- 6.6 CGNE -- 6.6.1 ClassNeRV stress -- 6.6.2 Flexibility of the supervision -- 6.6.3 Ablation study -- 6.6.4 Isolet 5 case study -- 6.6.5 Robustness to class misinformation -- 6.6.6 Extension to the type 2 mixture: ClassJSE -- 6.6.7 Extension to semi-supervision and weak-supervision -- 6.6.8 Extension to soft labels -- 7 Mapping construction -- 7.1 Optimization -- 7.1.1 Global and local optima -- 7.1.2 Descent algorithms -- 7.1.3 Initialization -- 7.1.4 Multi-scale optimization -- 7.1.5 Force-directed placement interpretation -- 7.2 Acceleration strategies -- 7.2.1 Attractive forces approximation -- 7.2.2 Binary search trees -- 7.2.3 Repulsive forces -- 7.2.4 Landmarks approximation -- 7.3 Out of sample extension -- 7.3.1 Applications -- 7.3.2 Parametric case -- 7.3.3 Non-parametric stress with neural network model -- 7.3.4 Non-parametric case -- 8 Applications -- 8.1 Smart buildings commissioning -- 8.1.1 System and rules -- 8.1.2 Mapping -- 8.2 Photovoltaics -- 8.2.1 I curves -- 8.2.2 Comparing normalized I curves -- 8.2.3 Colour description of the chemical compositions -- 8.3 Batteries -- 8.3.1 Case 1 1 -- 8.3.2 Case 2 2 -- 9 Conclusions -- Nomenclature -- A Some technical results -- A.1 Equivalence between triangle inequality and convexity of balls for -- a pseudo-norm -- A.2 From Pareto to exponential distribution -- A.3 Spiral and Swiss roll -- B Kullback eibler divergence -- B.1 Generalized Kullback eibler divergence -- B.1.1 Perplexity with hard neighbourhoods -- B.2 Link between soft and hard recall and precision -- Details of calculations -- C.1 General gradient of stress function -- C.2 Neighbourhood embedding -- C.2.1 Supervised neighbourhood embedding (asymmetric case) -- C.2.2 Mixtures -- C.2.3 Belonging rates -- C.2.4 Soft-min arguments -- C.2.5 Scale setting by perplexity -- C.2.6 Force interpretation -- D Spectral projections algebra -- D.1 PCA as matrix factorization and SVD resolution -- D.2 Link with linear projection -- D.3 Sparse expression -- D.4 PCA and centering: from affine to linear -- D.5 Link with covariance and Gram matrices -- D.6 From distances to Gram matrix -- D.6.1 Probabilistic interpretation and maximum likelihood -- D.7 Nyström approximation -- References -- Index 7. 
504 |a Includes bibliographical references and index. 
520 |a This book proposes tools for analysis of multidimensional and metric data, by establishing a state-of-the-art of the existing solutions and developing new ones. It mainly focuses on visual exploration of these data by a human analyst, relying on a 2D or 3D scatter plot display obtained through Dimensionality Reduction (DR). Performing diagnosis of an energy system requires identifying relations between observed monitoring variables and the associated internal state of the system. Dimensionality reduction, which allows to represent visually a multidimensional dataset, constitutes a promising tool to help domain experts to analyse these relations. This book reviews existing techniques for visual data exploration and dimensionality reduction, and proposes new solutions to challenges in that field. In order to perform diagnosis of energy systems, domain experts need to establish relations between the possible states of a given system and the measurement of a set of monitoring variables. Classical dimensionality reduction techniques such as tSNE and Isomap are presented, as well as the new unsupervised technique ASKI and the supervised methods ClassNeRV and ClassJSE. A new approach, MING for local map quality evaluation, is also introduced. These methods are then applied to the representation of expert-designed fault indicators for smart-buildings, I-V curves for photovoltaic systems and acoustic signals for Li-ion batteries. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed December 16, 2021). 
650 0 |a Dimension reduction (Statistics) 
650 0 |a Quantitative research. 
650 0 7 |a Análisis estadístico multivariable  |2 embucm 
650 7 |a Dimension reduction (Statistics)  |2 fast 
650 7 |a Quantitative research  |2 fast 
650 7 |a Estadística.  |2 thub 
650 7 |a Investigació quantitativa.  |2 thub 
655 0 |a Electronic books. 
655 7 |a Llibres electrònics.  |2 thub 
700 1 |a Colange, Benoit,  |e author. 
700 1 |a Dutykh, Denys,  |e author. 
776 0 8 |i Print version:  |a Lespinats, Sylvain.  |t Nonlinear dimensionality reduction techniques.  |d Cham, Switzerland : Springer, [2022]  |z 3030810259  |z 9783030810252  |w (OCoLC)1257402096 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-81026-9  |y Click for online access 
903 |a SPRING-MATH2022 
994 |a 92  |b HCD