Advanced combustion for sustainable transport / Avinash Kumar Agarwal, Antonio García Martínez, Ankur Kalwar, Hardikk Valera, editors.

This book is based on advanced combustion technologies currently employed in internal combustion engines. It discusses different strategies for improving conventional diesel combustion. The volume includes chapters on low-temperature combustion techniques of compression-ignition engines which result...

Full description

Saved in:
Bibliographic Details
Other Authors: Agarwal, Avinash K. (Avinash Kumar) (Editor), Martínez, Antonio García (Editor), Kalwar, Ankur (Editor), Valera, Hardikk (Editor)
Format: eBook
Language:English
Published: Singapore : Springer, [2022]
Series:Energy, environment, and sustainability.
Subjects:
Online Access:Click for online access
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Editors and Contributors
  • Part I General
  • 1 Introduction to Advanced Combustion for Sustainable Transport
  • References
  • Part II Advanced Combustion Technologies for CI Engines
  • 2 Strategical Evolution of Clean Diesel Combustion
  • 2.1 Introduction
  • 2.1.1 Future of Diesel Engine
  • 2.1.2 CDC and LTC
  • 2.2 Practical Limit of the Efficiency
  • 2.2.1 Constraints for Optimisation
  • 2.2.2 Heat Loss
  • 2.3 Mechanisms of Pollutant Formation
  • 2.3.1 Soot Formation
  • 2.3.2 CO and UHC Formation
  • 2.4 Strategic Evolution of CDC
  • 2.4.1 Injection Strategies
  • 2.4.2 Swirl and Intake Geometry
  • 2.4.3 Piston Bowl Geometry
  • 2.5 Future Research Directions
  • 2.5.1 Thermal Aspects
  • 2.5.2 Interdisciplinary Aspects
  • 2.6 Summary
  • References
  • 3 Multi-mode Low Temperature Combustion (LTC) and Mode Switching Control
  • 3.1 Introduction
  • 3.1.1 Limitations of LTC Operation
  • 3.1.2 Benefits of Multi-mode Operation
  • 3.1.3 Optimal Control of Multi-mode LTC Engine
  • 3.2 Controlled Variables
  • 3.2.1 Combustion Phasing
  • 3.2.2 Engine Load
  • 3.2.3 Exhaust Gas Temperature
  • 3.2.4 Maximum Pressure Rise Rate
  • 3.2.5 Engine-Out Emissions
  • 3.2.6 COVimep
  • 3.3 Control Actuators
  • 3.3.1 Variable Valve Actuation
  • 3.3.2 Fuel Injection System
  • 3.3.3 Fast Thermal Management (FTM)
  • 3.3.4 Exhaust Gas Recirculation (EGR)
  • 3.3.5 Intake Air Pressure Boosting System
  • 3.4 LTC Control
  • 3.4.1 Model-Free Closed-Loop Control Systems
  • 3.4.2 Model-Based Closed-Loop Control Systems
  • 3.4.3 HCCI Control
  • 3.4.4 PPCI Control
  • 3.4.5 RCCI Control
  • 3.5 Mode Switching Control
  • 3.5.1 SI-HCCI-SI Mode Switching
  • 3.5.2 HCCI-ASSCI-SI Mode Switching
  • 3.5.3 HCCI-PPCI Mode Switching
  • 3.5.4 CDC-PPCI Mode Switching
  • 3.6 CDC-RCCI Mode Switching
  • 3.7 RCCI-CDF Mode Switching
  • 3.8 Summary
  • References
  • 4 State of the Art in Low-Temperature Combustion Technologies: HCCI, PCCI, and RCCI
  • 4.1 Introduction
  • 4.1.1 Single Fuelled and Dual Fuelled Advance Combustion Technique
  • 4.2 Strategies to Develop Low-Temperature Combustion Technology
  • 4.2.1 Homogeneous Charge Compression Ignition Combustion (HCCI)
  • 4.2.2 Premixed Charge Compression Ignition Combustion (PCCI)
  • 4.2.3 Reactivity Controlled Compression Ignition (RCCI)
  • 4.3 Concluding Remarks
  • 4.4 Declaration of Competing Interest
  • References
  • 5 Combustion in Diesel Fuelled Partially Premixed Compression Ignition Engines
  • 5.1 Introduction
  • 5.2 Conventional Diesel Jet Combustion Model
  • 5.3 Chemical Kinetics
  • 5.4 Planar Laser-Induced Florescence (PLIF)
  • 5.5 First Stage Ignition
  • 5.6 Second Stage Ignition
  • 5.7 Summary and Way Forward
  • References
  • 6 Gasoline Compression Ignition Combustion Strategies and Recent Engine System Developments for Commercial and Passenger Transport Applications
  • 6.1 Introduction
  • 6.2 Gasoline Autoignition Behavior
  • 6.3 Gasoline Spray Characteristics