Artificial intelligence and machine learning : 33rd Benelux Conference on Artificial Intelligence, BNAIC/Benelearn 2021, Esch-sur-Alzette, Luxembourg, November 10-12, 2021, Revised selected papers / Luis A. Leiva, Cédric Pruski, Réka Markovich, Amro Najjar, Christoph Schommer (eds.).

This book contains a selection of the best papers of the 33rd Benelux Conference on Artificial Intelligence, BNAIC/ BENELEARN 2021, held in Esch-sur-Alzette, Luxembourg, in November 2021. The 14 papers presented in this volume were carefully reviewed and selected from 46 regular submissions. They ad...

Full description

Saved in:
Bibliographic Details
Corporate Author: Benelux Conference on Artificial Intelligence Esch-sur-Alzette, Luxembourg
Other Authors: Leiva, Luis A. (Editor), Pruski, Cédric (Editor), Markovich, Réka (Editor), Najjar, Amro (Editor), Schommer, Christoph (Editor)
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, 2022.
Series:Communications in computer and information science ; 1530.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1293852132
003 OCoLC
005 20241006213017.0
006 m o d
007 cr un|---aucuu
008 220127s2022 sz o 101 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d OCLCO  |d DCT  |d DKU  |d EBLCP  |d OCLCF  |d OCLCO  |d UKAHL  |d OCLCQ  |d OCLCO  |d WSU  |d OCLCO  |d OCLCQ 
019 |a 1292034384  |a 1292067950  |a 1292144858  |a 1292350825  |a 1292426737  |a 1294360855  |a 1296666565 
020 |a 9783030938420  |q (electronic bk.) 
020 |a 3030938425  |q (electronic bk.) 
020 |z 9783030938413  |q (print) 
020 |z 3030938417 
024 7 |a 10.1007/978-3-030-93842-0  |2 doi 
035 |a (OCoLC)1293852132  |z (OCoLC)1292034384  |z (OCoLC)1292067950  |z (OCoLC)1292144858  |z (OCoLC)1292350825  |z (OCoLC)1292426737  |z (OCoLC)1294360855  |z (OCoLC)1296666565 
037 |b Springer 
050 4 |a Q334  |b .B46 2021eb 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
049 |a HCDD 
111 2 |a Benelux Conference on Artificial Intelligence  |n (33rd :  |d 2021 :  |c Esch-sur-Alzette, Luxembourg) 
245 1 0 |a Artificial intelligence and machine learning :  |b 33rd Benelux Conference on Artificial Intelligence, BNAIC/Benelearn 2021, Esch-sur-Alzette, Luxembourg, November 10-12, 2021, Revised selected papers /  |c Luis A. Leiva, Cédric Pruski, Réka Markovich, Amro Najjar, Christoph Schommer (eds.). 
246 3 |a BNAIC/Benelearn 2021 
264 1 |a Cham, Switzerland :  |b Springer,  |c 2022. 
300 |a 1 online resource (x, 255 pages) :  |b illustrations (some color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |b PDF  |2 rda 
490 1 |a Communications in computer and information science,  |x 1865-0937 ;  |v 1530 
520 |a This book contains a selection of the best papers of the 33rd Benelux Conference on Artificial Intelligence, BNAIC/ BENELEARN 2021, held in Esch-sur-Alzette, Luxembourg, in November 2021. The 14 papers presented in this volume were carefully reviewed and selected from 46 regular submissions. They address various aspects of artificial intelligence such as natural language processing, agent technology, game theory, problem solving, machine learning, human-agent interaction, AI and education, and data analysis. 
500 |a Includes author index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed January 27, 2022). 
505 0 |a Intro -- Preface -- Organization -- Contents -- Annotating Data -- Active Learning for Reducing Labeling Effort in Text Classification Tasks -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Active Learning -- 3.2 Model Architecture -- 3.3 Query Functions -- 3.4 Heuristics -- 3.5 Experimental Setup -- 4 Results -- 4.1 Active Learning -- 4.2 Query-Pool Size -- 4.3 Heuristics -- 5 Discussion -- A.1 RET Algorithm Computational Cost Analysis -- A.2 Algorithms -- References -- Refining Weakly-Supervised Free Space Estimation Through Data Augmentation and Recursive Training 
505 8 |a 1 Introduction -- 2 Related Work -- 2.1 Supervised Learning for Segmentation -- 2.2 Weakly-Supervised Semantic Segmentation -- 2.3 Unsupervised and Weakly-Supervised Monocular Free Space Segmentation -- 2.4 Training Strategies for Weakly-Supervised Segmentation -- 3 Methodology -- 3.1 Data Augmentation -- 3.2 Recursive Training -- 4 Experimental Setup -- 4.1 Dataset -- 4.2 Evaluation Metrics -- 4.3 Network Architectures -- 4.4 Training Procedure -- 4.5 Use of Ground Truth Data -- 5 Results -- 5.1 Fully-Supervised Results -- 5.2 Unsupervised and Weakly-Supervised Baselines 
505 8 |a 5.3 Data Augmentation and Recursive Training -- 5.4 Limits of Recursive Training -- 5.5 Qualitative Results -- 6 Conclusion -- References -- Self-labeling of Fully Mediating Representations by Graph Alignment -- 1 Introduction -- 2 Related Work -- 3 Self-labeling of Fully Mediating Representations -- 3.1 Graph Alignment -- 3.2 Method -- 4 Experiments -- 5 Conclusion -- A Appendix -- A.1 Architecture Summary of Graph Recognition Tool -- A.2 Training Details for Graph Recognition Tool -- A.3 Computational Cost per Rich-Labeling Iteration -- A.4 Examples of Cases Where Graph Alignment Fails 
505 8 |a 3 Proposed Method -- 3.1 Adversarial Domain Adaptation for Object Detection -- 4 Implementation Details -- 5 Evaluation -- 5.1 Datasets -- 5.2 Experiments -- 6 Conclusion -- References -- Explaining Outcomes -- Exploring Explainable AI in the Financial Sector: Perspectives of Banks and Supervisory Authorities -- Abstract -- 1 Introduction -- 2 Theoretical Background -- 3 Research Method -- 3.1 Use Cases -- 3.2 Data Collection -- 3.3 Data Analysis -- 4 Results -- 4.1 Consumer Credit -- 4.2 Credit Risk Management -- 4.3 Anti-money Laundering (AML) -- 4.4 General -- 5 Discussion and Conclusions 
650 0 |a Artificial intelligence  |v Congresses. 
650 0 |a Machine learning  |v Congresses. 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
655 7 |a proceedings (reports)  |2 aat 
655 7 |a Conference papers and proceedings  |2 fast 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congrès.  |2 rvmgf 
700 1 |a Leiva, Luis A.  |e editor.  |0 (orcid)0000-0002-5011-1847  |1 https://orcid.org/0000-0002-5011-1847 
700 1 |a Pruski, Cédric,  |e editor.  |1 https://orcid.org/0000-0002-2103-0431 
700 1 |a Markovich, Réka,  |e editor.  |0 (orcid)0000-0002-2488-2293  |1 https://orcid.org/0000-0002-2488-2293 
700 1 |a Najjar, Amro,  |e editor.  |1 https://orcid.org/0000-0001-7784-6176 
700 1 |a Schommer, Christoph,  |e editor.  |0 (orcid)0000-0002-0308-7637  |1 https://orcid.org/0000-0002-0308-7637 
776 0 8 |c Original  |z 3030938417  |z 9783030938413  |w (OCoLC)1286798603 
830 0 |a Communications in computer and information science ;  |v 1530.  |x 1865-0937 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-93842-0  |y Click for online access 
903 |a SPRING-COMP2022 
994 |a 92  |b HCD