Biogeochemistry of the critical zone / Adam S. Wymore, Wendy H. Yang, Whendee L. Silver, William H. McDowell, Jon Chorover, editors.

This book highlights recent advances in the discipline of biogeochemistry that have directly resulted from the development of critical zone (CZ) science. The earth's critical zone (CZ) is defined from the weathering front and lowest extent of freely circulating groundwater up through the regoli...

Full description

Saved in:
Bibliographic Details
Other Authors: Wymore, Adam S. (Editor), Yang, Wendy H. (Editor), Silver, Whendee L. (Editor), McDowell, William H. (Editor), Chorover, Jon (Editor)
Format: eBook
Language:English
Published: Cham : Springer, [2022]
Series:Advances in critical zone science.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1319074356
003 OCoLC
005 20240909213021.0
006 m o d
007 cr |n|||||||||
008 220520s2022 sz a o 000 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCF  |d N$T  |d UKAHL  |d OCLCQ  |d WAU  |d OCLCO  |d OCLCQ 
019 |a 1319200150  |a 1319215557 
020 |a 9783030959210  |q (electronic bk.) 
020 |a 303095921X  |q (electronic bk.) 
020 |z 9783030959203 
020 |z 3030959201 
024 7 |a 10.1007/978-3-030-95921-0  |2 doi 
035 |a (OCoLC)1319074356  |z (OCoLC)1319200150  |z (OCoLC)1319215557 
050 4 |a QH343.7 
072 7 |a SCI019000  |2 bisacsh 
049 |a HCDD 
245 0 0 |a Biogeochemistry of the critical zone /  |c Adam S. Wymore, Wendy H. Yang, Whendee L. Silver, William H. McDowell, Jon Chorover, editors. 
264 1 |a Cham :  |b Springer,  |c [2022] 
264 4 |c ©2022 
300 |a 1 online resource (ix, 202 pages) :  |b illustrations (chiefly color). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in critical zone science 
520 |a This book highlights recent advances in the discipline of biogeochemistry that have directly resulted from the development of critical zone (CZ) science. The earth's critical zone (CZ) is defined from the weathering front and lowest extent of freely circulating groundwater up through the regolith and to the top of the vegetative canopy. The structure and function of the CZ is shaped through tectonic, lithologic, hydrologic, climatic, and biological processes and is the result of processes occurring at multiple time scales from eons to seconds. The CZ is an open system in which energy and matter are both transported and transformed. Critical zone science provides a novel and unifying framework to consider those coupled interactions that control biogeochemical cycles and fluxes of energy and matter that are critical to sustaining a habitable planet. Biogeochemical processes are at the heart of energy and matter fluxes through ecosystems and watersheds. They control the quantity and quality of carbon and nutrients available for living organisms, control the retention and export of nutrients affecting water quality and soil fertility, and influence the ability for ecosystems to sequester carbon. As the term implies, biogeochemical cycles, and the rates at which they occur, result from the interaction of biological, chemical, and physical processes. However, finding a unifying framework by which to study these interactions is challenging, and the different components of bio-geo-chemistry are often studied in isolation. The authors provide both reviews and original research contributions with the requirement that the chapters incorporate a CZ framework to test biogeochemical theory and/or develop new and robust predictive models regarding elemental cycles. The book demonstrates how the CZ framework provides novel insights into biogeochemistry. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed May 27, 2022). 
505 0 |a Intro -- Series Editor's Preface -- Contents -- 1 An Introduction to Biogeochemistry of the Critical Zone -- References -- 2 Hot Spots and Hot Moments in the Critical Zone: Identification of and Incorporation into Reactive Transport Models -- 2.1 Introduction -- 2.1.1 Definition of Terms -- 2.1.2 Scope and Overall Impact -- 2.2 Capturing Scales and Complexity Using Models -- 2.2.1 Hot Spots Within the Hyporheic Zone-The Redox Microzone Concept -- 2.2.2 HSHMs at the Floodplain Scale -- 2.2.3 HSHMs Along River Corridors -- 2.3 Current Understanding and the Path Forward 
505 8 |a 2.3.1 A Conceptual Take on HSHMs Using a Trait-Based Framework -- 2.3.2 Improvements in Field-Scale Characterization of Hyporheic Zones -- 2.3.3 Recent Developments in Observation and Modeling of Hot Spots Featuring the Sediment Water Interface -- 2.4 How Can Models Contribute? -- 2.4.1 Scale Aware Modeling/Parameterization -- 2.4.2 A Preemptive Prioritization of HSHMs -- 2.5 Concluding Remarks -- References -- 3 Constraints of Climate and Age on Soil Development in Hawai'i -- 3.1 Understanding Critical Zone Functioning Through State Factor Analysis -- 3.2 Physiographic Setting 
505 8 |a 3.3 Analytical Approach -- 3.4 Development of Critical Zone Properties Across the Hawaiian Islands -- 3.4.1 Weathering Depth and Chemical Denudation -- 3.4.2 Conditioning Lava Flows for Critical Zone Development -- 3.5 Biogeochemical Properties of Hawaiian Critical Zone -- 3.5.1 Weathering and Soil Properties -- 3.6 Soil Process Domains and Pedogenic Thresholds in Hawai'i -- 3.6.1 Process Domains -- 3.6.2 Transitions Among Process Domains -- 3.7 Conclusions -- References -- 4 Biofilms in the Critical Zone: Distribution and Mediation of Processes -- 4.1 Introduction 
505 8 |a 4.2 Documenting Environmental Biofilms Using the Scanning Electron Microscope -- 4.3 Biofilms in the Critical Zone -- 4.3.1 Plant Hosted, Biofilms Above Ground: Phyllosphere and Endosphere -- 4.3.2 Biofilms in the Soil -- 4.3.3 Biofilms in the Deep Critical Zone -- 4.4 Biofilm Mediation of Critical Zone Processes -- 4.4.1 Biofilm Role in OM Stabilization, Biogenic Minerals -- 4.4.2 Biofilm Role in Mineral Weathering -- 4.4.3 Biofilm Strategies to Survive Drought -- 4.5 Summary -- References -- 5 Eroded Critical Zone Carbon and Where to Find It: Examples from the IML-CZO -- 5.1 Introduction 
505 8 |a 5.1.1 Field Site -- 5.2 Methods -- 5.2.1 Estimates of Post-settlement Sediment Accumulation -- 5.2.2 Organic Carbon Concentrations and C-Isotopic Compositions -- 5.2.3 Biomarkers -- 5.3 Results and Discussion -- 5.3.1 Sediment and OC Inventories -- 5.3.2 Organic C Sources and Composition -- 5.4 Conclusions -- References -- 6 Advances in Biogeochemical Modeling for Intensively Managed Landscapes -- 6.1 Introduction -- 6.2 Long-Term Carbon Dynamics -- 6.3 Event-Scale Biogeochemical Dynamics: The Impact of Microtopography and Artificial Drainage -- 6.4 Root Zone Biogeochemistry -- References 
650 0 |a Biogeochemistry. 
650 7 |a Biogeochemistry  |2 fast 
700 1 |a Wymore, Adam S.,  |e editor. 
700 1 |a Yang, Wendy H.,  |e editor. 
700 1 |a Silver, Whendee L.,  |e editor. 
700 1 |a McDowell, William H.,  |e editor. 
700 1 |a Chorover, Jon,  |e editor. 
776 0 8 |i Print version:  |z 3030959201  |z 9783030959203  |w (OCoLC)1291393272 
830 0 |a Advances in critical zone science. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-95921-0  |y Click for online access 
903 |a SPRING-CHEM2020 
994 |a 92  |b HCD