Reverse mathematics : problems, reductions, and proofs / Damir D. Dzhafarov, Carl Mummert.

Saved in:
Bibliographic Details
Main Author: Dzhafarov, Damir D.
Other Authors: Mummert, Carl, 1978-
Format: eBook
Language:English
Published: Cham : Springer, 2022.
Series:Theory and applications of computability.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1337946026
003 OCoLC
005 20240504213016.0
006 m o d
007 cr un|---aucuu
008 220806s2022 sz ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d GW5XE  |d YDX  |d EBLCP  |d OCLCQ  |d OCLCF  |d UKAHL  |d OCLCQ  |d INT  |d OCLCO  |d OCLCL 
019 |a 1337523666  |a 1374608939 
020 |a 9783031113673  |q (electronic bk.) 
020 |a 3031113675  |q (electronic bk.) 
020 |z 9783031113666 
020 |z 3031113667 
020 |a 9788303111364  |q (3) 
020 |a 8303111361 
024 7 |a 10.1007/978-3-031-11367-3  |2 doi 
035 |a (OCoLC)1337946026  |z (OCoLC)1337523666  |z (OCoLC)1374608939 
050 4 |a QA9.25 
072 7 |a COM018000  |2 bisacsh 
049 |a HCDD 
100 1 |a Dzhafarov, Damir D. 
245 1 0 |a Reverse mathematics :  |b problems, reductions, and proofs /  |c Damir D. Dzhafarov, Carl Mummert. 
260 |a Cham :  |b Springer,  |c 2022. 
300 |a 1 online resource (498 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft  |0 http://rdaregistry.info/termList/fileType/1002 
490 1 |a Theory and applications of computability 
505 0 |a Intro -- Preface -- Acknowledgments -- Contents -- List of Figures -- Introduction -- What is reverse mathematics? -- Historical remarks -- Considerations about coding -- Philosophical implications -- Conventions and notation -- Part I Computable mathematics -- Computability theory -- The informal idea of computability -- Primitive recursive functions -- Some primitive recursive functions -- Bounded quantification -- Coding sequences with primitive recursion -- Turing computability -- Three key theorems -- Computably enumerable sets and the halting problem 
505 8 |a The arithmetical hierarchy and Post's theorem -- Relativization and oracles -- Trees and PA degrees -- Pi-0-1 classes -- Basis theorems -- PA degrees -- Exercises -- Instance-solution problems -- Problems -- Forall/exists theorems -- Multiple problem forms -- Represented spaces -- Representing R -- Complexity -- Uniformity -- Further examples -- Exercises -- Problem reducibilities -- Subproblems and identity reducibility -- Computable reducibility -- Weihrauch reducibility -- Strong forms -- Multiple applications -- Omega model reducibility -- Hirschfeldt-Jockusch games -- Exercises 
505 8 |a Part II Formalization and syntax -- Second order arithmetic -- Syntax and semantics -- Hierarchies of formulas -- Arithmetical formulas -- Analytical formulas -- Arithmetic -- First order arithmetic -- Second order arithmetic -- Formalization -- The subsystem RCAo -- Delta-0-1 comprehension -- Coding finite sets -- Formalizing computability theory -- The subsystems ACAo and WKLo -- The subsystem ACA0 -- The subsystem WKL0 -- Equivalences between mathematical principles -- The subsystems P11-CAo and ATRo -- The subsystem Pi-1-1-CA0 -- The subsystem ATR0 -- Conservation results 
505 8 |a First order parts of theories -- Comparing reducibility notions -- Full second order semantics -- Exercises -- Induction and bounding -- Induction, bounding, and least number principles -- Finiteness, cuts, and all that -- The Kirby-Paris hierarchy -- Reverse recursion theory -- Hirst's theorem and B-Sigma02 -- So, why Sigma-01 induction? -- Exercises -- Forcing -- A motivating example -- Notions of forcing -- Density and genericity -- The forcing relation -- Effective forcing -- Forcing in models -- Harrington's theorem and conservation -- Exercises -- Part III Combinatorics -- Ramsey's theorem 
505 8 |a Upper bounds -- Lower bounds -- Seetapun's theorem -- Stability and cohesiveness -- Stability -- Cohesiveness -- The Cholak-Jockusch-Slaman decomposition -- A different proof of Seetapun's theorem -- Other applications -- Liu's theorem -- Preliminaries -- Proof of Lemma 8.6.6 -- Proof of Lemma 8.6.7 -- The first order part of RT -- Two versus arbitrarily many colors -- Proof of Proposition 8.7.4 -- Proof of Proposition 8.7.5 -- What else is known? -- The SRT22 vs. COH problem -- Summary: Ramsey's theorem and the ``big five'' -- Exercises -- Other combinatorial principles -- Finer results about RT 
500 |a Ramsey's theorem for singletons 
520 |a Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we prove this result without first proving that one? Can a computer solve this problem? A highly active part of mathematical logic and computability theory, the subject offers beautiful results as well as significant foundational insights. This text provides a modern treatment of reverse mathematics that combines computability theoretic reductions and proofs in formal arithmetic to measure the complexity of theorems and problems from all areas of mathematics. It includes detailed introductions to techniques from computable mathematics, Weihrauch style analysis, and other parts of computability that have become integral to research in the field. Topics and features: Provides a complete introduction to reverse mathematics, including necessary background from computability theory, second order arithmetic, forcing, induction, and model construction Offers a comprehensive treatment of the reverse mathematics of combinatorics, including Ramsey's theorem, Hindman's theorem, and many other results Provides central results and methods from the past two decades, appearing in book form for the first time and including preservation techniques and applications of probabilistic arguments Includes a large number of exercises of varying levels of difficulty, supplementing each chapter The text will be accessible to students with a standard first year course in mathematical logic. It will also be a useful reference for researchers in reverse mathematics, computability theory, proof theory, and related areas. Damir D. Dzhafarov is an Associate Professor of Mathematics at the University of Connecticut, CT, USA. Carl Mummert is a Professor of Computer and Information Technology at Marshall University, WV, USA. 
504 |a Includes bibliographical references and index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed August 8, 2022). 
650 0 |a Reverse mathematics. 
650 7 |a Reverse mathematics  |2 fast 
700 1 |a Mummert, Carl,  |d 1978-  |1 https://id.oclc.org/worldcat/entity/E39PBJgRMRK68PVmpxbmF3RxjC 
776 0 8 |i Print version:  |a Dzhafarov, Damir D.  |t Reverse Mathematics.  |d Cham : Springer International Publishing AG, ©2022  |z 9783031113666 
830 0 |a Theory and applications of computability. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-11367-3  |y Click for online access 
903 |a SPRING-COMP2022 
994 |a 92  |b HCD