Artificial neural networks and machine learning -- ICANN 2022 : Part I / 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6-9, 2022, Proceedings. Elias Pimenidis, Plamen Angelov, Chrisina Jayne, Antonios Papaleonidas, Mehmet Aydin (eds.).

The 4-volumes set of LNCS 13529, 13530, 13531, and 13532 constitutes the proceedings of the 31st International Conference on Artificial Neural Networks, ICANN 2022, held in Bristol, UK, in September 2022. The total of 255 full papers presented in these proceedings was carefully reviewed and selected...

Full description

Saved in:
Bibliographic Details
Corporate Author: International Conference on Artificial Neural Networks (European Neural Network Society) Bristol, England ; Online)
Other Authors: Pimenidis, Elias, Angelov, Plamen P., Jayne, Chrisina, Papaleonidas, Antonios, Aydin, M. E. (Mehmet E.)
Format: eBook
Language:English
Published: Cham : Springer, 2022.
Series:Lecture notes in computer science ; 13529.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1344159836
003 OCoLC
005 20241006213017.0
006 m o d
007 cr un|---aucuu
008 220910s2022 sz o 101 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d GW5XE  |d EBLCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d INT  |d WSU  |d OCLCO  |d OCLCL 
019 |a 1374610268 
020 |a 9783031159190  |q (electronic bk.) 
020 |a 3031159195  |q (electronic bk.) 
020 |a 9788303115911  |q (0) 
020 |a 830311591X 
024 7 |a 10.1007/978-3-031-15919-0  |2 doi 
035 |a (OCoLC)1344159836  |z (OCoLC)1374610268 
050 4 |a QA76.87 
072 7 |a UYQ  |2 bicssc 
072 7 |a COM004000  |2 bisacsh 
072 7 |a UYQ  |2 thema 
049 |a HCDD 
111 2 |a International Conference on Artificial Neural Networks (European Neural Network Society)  |n (31st :  |d 2022 :  |c Bristol, England ; Online) 
245 1 0 |a Artificial neural networks and machine learning -- ICANN 2022 :  |b 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6-9, 2022, Proceedings.  |n Part I /  |c Elias Pimenidis, Plamen Angelov, Chrisina Jayne, Antonios Papaleonidas, Mehmet Aydin (eds.). 
246 3 |a ICANN 2022 
260 |a Cham :  |b Springer,  |c 2022. 
300 |a 1 online resource (783 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft  |0 http://rdaregistry.info/termList/fileType/1002 
490 1 |a Lecture notes in computer science ;  |v 13529 
505 0 |a Intro -- Preface -- Organization -- Contents -- Part I -- A Novel Deep Learning Based Method for Doppler Spectral Curve Detection -- 1 Introduction -- 2 Proposed Method -- 2.1 Preprocessing and Coarse Segmentation -- 2.2 Curve Correction -- 2.3 Curve Filling -- 2.4 Curve Fusion -- 2.5 Objective Function -- 3 Experiment -- 3.1 Dataset -- 3.2 Implementation Details -- 3.3 Quantitative Evaluation -- 3.4 Performance Evaluation of Proposed Model Combined with U-net -- 3.5 Comparison of Model Efficiency -- 4 Conclusion -- References 
505 8 |a A Unified Multiple Inducible Co-attentions and Edge Guidance Network for Co-saliency Detection -- 1 Introduction -- 2 Proposed Method -- 2.1 Classified Inducible Co-Attention -- 2.2 Focal Inducible Co-attention -- 2.3 Individual Extraction -- 2.4 Loss Function -- 3 Experiments -- 3.1 Datasets and Evaluation Metrics -- 3.2 Implementation Details -- 3.3 Comparison with the State-of-the-Art -- 3.4 Ablation Studies -- 4 Conclusion -- References -- Attention Guided Network for Salient Object Detection in Optical Remote Sensing Images -- 1 Introduction -- 2 Related Work 
505 8 |a 2.1 Attention Mechanism for SOD -- 2.2 Salient Object Detection for RSIs -- 3 Approach -- 3.1 Feature Encoding Backbone -- 3.2 Position Enhancement Stage -- 3.3 Detail Refinement Stage -- 3.4 Hybrid Loss of AGNet -- 4 Experiment -- 4.1 Implementation Details -- 4.2 Ablation Studies -- 4.3 Comparison with State-of-the-arts -- 5 Conclusion -- References -- BiSMSM: A Hybrid MLP-Based Model of Global Self-Attention Processes for EEG-Based Emotion Recognition -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Spatial/Temporal Stream -- 3.2 MLP-SA Mixer -- 4 Experiments -- 4.1 Datasets 
505 8 |a 4.2 Experimental Setup -- 4.3 Performance -- 5 Conclusion -- References -- Boosting Both Robustness and Hardware Efficiency via Random Pruning Mask Selection -- 1 Introduction -- 2 Background and Related Works -- 2.1 Adversarial Attacks and Adversarial Training -- 2.2 Double-Win Network Pruning -- 3 Method -- 3.1 Random Mask Selection (RMS) Strategy -- 3.2 Iterative Retraining Framework -- 3.3 Hardware-Aware RMS (HW-RMS) -- 4 Experiments -- 4.1 Experiment Setup -- 4.2 Benchmark with SOTA Methods -- 4.3 Comparison with RST -- 4.4 Ablation Study of FSP and Adversarial Gaps -- 5 Conclusion 
504 |a References-Brain Tumor Segmentation Framework Based on Edge Cloud Cooperation and Deep Learning-1 Introduction-2 Related Works-3 Methods-3.1 The Workflow of ECC-BTSD-3.2 The Edge End of ECC-BTSD-3.3 The Cloud End of ECC-BTSD-4 Experiments-4.1 The Dataset and Preprocessing-4.2 Performance of ECC-BSTD in the Offline Mode-4.3 Performance of ECC-BSTD in the Online Mode-4.4 ECC-BSTD Analysis Under Edge-Cloud Collaboration-5 Conclusion-References-CLTS+: A New Chinese Long Text Summarization Dataset with Abstractive Summaries-1 Introduction 
500 |a 2 Related Work 
520 |a The 4-volumes set of LNCS 13529, 13530, 13531, and 13532 constitutes the proceedings of the 31st International Conference on Artificial Neural Networks, ICANN 2022, held in Bristol, UK, in September 2022. The total of 255 full papers presented in these proceedings was carefully reviewed and selected from 561 submissions. ICANN 2022 is a dual-track conference featuring tracks in brain inspired computing and machine learning and artificial neural networks, with strong cross-disciplinary interactions and applications. 
500 |a Includes author index. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed September 14, 2022). 
650 0 |a Neural networks (Computer science)  |v Congresses. 
650 0 |a Machine learning  |v Congresses. 
650 0 |a Artificial intelligence  |v Congresses. 
650 7 |a Artificial intelligence  |2 fast 
650 7 |a Machine learning  |2 fast 
650 7 |a Neural networks (Computer science)  |2 fast 
655 0 |a Electronic books. 
655 7 |a proceedings (reports)  |2 aat 
655 7 |a Conference papers and proceedings  |2 fast 
655 7 |a Conference papers and proceedings.  |2 lcgft 
655 7 |a Actes de congrès.  |2 rvmgf 
700 1 |a Pimenidis, Elias. 
700 1 |a Angelov, Plamen P. 
700 1 |a Jayne, Chrisina. 
700 1 |a Papaleonidas, Antonios. 
700 1 |a Aydin, M. E.  |q (Mehmet E.)  |1 https://id.oclc.org/worldcat/entity/E39PCjvkydt8fR9tyyWKgqg9pd 
776 0 8 |i Print version:  |a Pimenidis, Elias.  |t Artificial Neural Networks and Machine Learning - ICANN 2022.  |d Cham : Springer International Publishing AG, ©2022  |z 9783031159183 
830 0 |a Lecture notes in computer science ;  |v 13529. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-15919-0  |y Click for online access 
903 |a SPRING-COMP2022 
994 |a 92  |b HCD