Bayesian Statistics An Introduction.

Saved in:
Bibliographic Details
Main Author: Lee, Peter M.
Format: eBook
Language:English
Published: Newark : John Wiley & Sons, Incorporated, 2012.
Series:New York Academy of Sciences Ser.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000Mu 4500
001 on1347025204
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu||||||||
008 230209s2012 xx o ||| 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d OCLCQ  |d OCLCO  |d OCLCQ  |d EBLCP  |d OCLCQ  |d OCLCL  |d OCLCQ  |d UEJ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
020 |a 9781118359754 
020 |a 1118359755 
035 |a (OCoLC)1347025204 
050 4 |a QA279.5  |b .L44 2012 
049 |a HCDD 
100 1 |a Lee, Peter M. 
245 1 0 |a Bayesian Statistics  |h [electronic resource] :  |b An Introduction. 
260 |a Newark :  |b John Wiley & Sons, Incorporated,  |c 2012. 
300 |a 1 online resource (488 p.). 
490 1 |a New York Academy of Sciences Ser. 
500 |a Description based upon print version of record. 
505 0 |a Intro -- Bayesian Statistics -- Contents -- Preface -- Preface to the First Edition -- 1 Preliminaries -- 1.1 Probability and Bayes' Theorem -- 1.1.1 Notation -- 1.1.2 Axioms for probability -- 1.1.3 'Unconditional' probability -- 1.1.4 Odds -- 1.1.5 Independence -- 1.1.6 Some simple consequences of the axioms -- Bayes' Theorem -- 1.2 Examples on Bayes' Theorem -- 1.2.1 The Biology of Twins -- 1.2.2 A political example -- 1.2.3 A warning -- 1.3 Random variables -- 1.3.1 Discrete random variables -- 1.3.2 The binomial distribution -- 1.3.3 Continuous random variables 
505 8 |a 1.3.4 The normal distribution -- 1.3.5 Mixed random variables -- 1.4 Several random variables -- 1.4.1 Two discrete random variables -- 1.4.2 Two continuous random variables -- 1.4.3 Bayes' Theorem for random variables -- 1.4.4 Example -- 1.4.5 One discrete variable and one continuous variable -- 1.4.6 Independent random variables -- 1.5 Means and variances -- 1.5.1 Expectations -- 1.5.2 The expectation of a sum and of a product -- 1.5.3 Variance, precision and standard deviation -- 1.5.4 Examples -- 1.5.5 Variance of a sum -- covariance and correlation 
505 8 |a 1.5.6 Approximations to the mean and variance of a function of a random variable -- 1.5.7 Conditional expectations and variances -- 1.5.8 Medians and modes -- 1.6 Exercises on Chapter 1 -- 2 Bayesian inference for the normal distribution -- 2.1 Nature of Bayesian inference -- 2.1.1 Preliminary remarks -- 2.1.2 Post is prior times likelihood -- 2.1.3 Likelihood can be multiplied by any constant -- 2.1.4 Sequential use of Bayes' Theorem -- 2.1.5 The predictive distribution -- 2.1.6 A warning -- 2.2 Normal prior and likelihood -- 2.2.1 Posterior from a normal prior and likelihood -- 2.2.2 Example 
505 8 |a 2.2.3 Predictive distribution -- 2.2.4 The nature of the assumptions made -- 2.3 Several normal observations with a normal prior -- 2.3.1 Posterior distribution -- 2.3.2 Example -- 2.3.3 Predictive distribution -- 2.3.4 Robustness -- 2.4 Dominant likelihoods -- 2.4.1 Improper priors -- 2.4.2 Approximation of proper priors by improper priors -- 2.5 Locally uniform priors -- 2.5.1 Bayes' postulate -- 2.5.2 Data translated likelihoods -- 2.5.3 Transformation of unknown parameters -- 2.6 Highest density regions -- 2.6.1 Need for summaries of posterior information 
505 8 |a 2.6.2 Relation to classical statistics -- 2.7 Normal variance -- 2.7.1 A suitable prior for the normal variance -- 2.7.2 Reference prior for the normal variance -- 2.8 HDRs for the normal variance -- 2.8.1 What distribution should we be considering? -- 2.8.2 Example -- 2.9 The role of sufficiency -- 2.9.1 Definition of sufficiency -- 2.9.2 Neyman's factorization theorem -- 2.9.3 Sufficiency principle -- 2.9.4 Examples -- 2.9.5 Order statistics and minimal sufficient statistics -- 2.9.6 Examples on minimal sufficiency -- 2.10 Conjugate prior distributions -- 2.10.1 Definition and difficulties 
500 |a 2.10.2 Examples 
650 0 |a Bayesian statistical decision theory.  |1 http://www.wikidata.org/entity/Q812535 
650 0 |a Mathematical statistics. 
650 0 |a Bayesian statistical decision theory. 
655 0 |a Electronic books. 
758 |i has work:  |a Bayesian statistics (Text)  |1 https://id.oclc.org/worldcat/entity/E39PCFQfd4PfFJXFkWXkykPXv3  |4 https://id.oclc.org/worldcat/ontology/hasWork 
776 0 8 |i Print version:  |a Lee, Peter M.  |t Bayesian Statistics  |d Newark : John Wiley & Sons, Incorporated,c2012  |z 9781118332573 
830 0 |a New York Academy of Sciences Ser. 
856 4 0 |u https://ebookcentral.proquest.com/lib/holycrosscollege-ebooks/detail.action?docID=7103580  |y Click for online access 
903 |a EBC-AC 
994 |a 92  |b HCD