Energy efficient computation offloading in mobile edge computing / Ying Chen, Ning Zhang, Yuan Wu, Sherman Shen.

This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel allocation, frequency scaling and resource sch...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Ying (Author), Zhang, Ning (Computer scientist) (Author), Wu, Yuan (Author), Shen, X. (Xuemin), 1958- (Author)
Format: eBook
Language:English
Published: Cham : Springer, 2022.
Series:Wireless networks (Springer (Firm))
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1350381178
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu---unuuu
008 221107s2022 sz a o 000 0 eng d
040 |a GW5XE  |b eng  |e rda  |e pn  |c GW5XE  |d YDX  |d EBLCP  |d OCLCF  |d N$T  |d UKAHL  |d INT  |d OCLCO  |d OCLCL 
019 |a 1349563245  |a 1374612332 
020 |a 9783031168222  |q (electronic bk.) 
020 |a 3031168224  |q (electronic bk.) 
020 |z 9783031168215 
020 |z 3031168216 
020 |a 9788303116826  |q (2) 
020 |a 8303116827 
024 7 |a 10.1007/978-3-031-16822-2  |2 doi 
035 |a (OCoLC)1350381178  |z (OCoLC)1349563245  |z (OCoLC)1374612332 
050 4 |a QA76.583 
072 7 |a UKN  |2 bicssc 
072 7 |a COM075000  |2 bisacsh 
072 7 |a UKN  |2 thema 
049 |a HCDD 
100 1 |a Chen, Ying,  |e author. 
245 1 0 |a Energy efficient computation offloading in mobile edge computing /  |c Ying Chen, Ning Zhang, Yuan Wu, Sherman Shen. 
264 1 |a Cham :  |b Springer,  |c 2022. 
300 |a 1 online resource :  |b illustrations (black and white). 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft  |0 http://rdaregistry.info/termList/fileType/1002 
490 1 |a Wireless networks 
505 0 |a Introduction -- 1.1 Background -- 1.1.1 Mobile Cloud Computing -- 1.1.2 Mobile Edge Computing -- 1.1.3 Computation Offloading -- 1.2 Challenges -- 1.3 Contributions -- 1.4 Book Outline -- References -- 2 Dynamic Computation Offloading for Energy Efficiency in Mobile -- Edge Computing -- 2.1 System Model and Problem Statement -- 2.1.1 Network Model -- 2.1.2 Task Offloading Model -- 2.1.3 Task Queuing Model -- 2.1.4 Energy Consumption Model -- 2.1.5 Problem Statement -- 2.2 EEDCO: Energy Efficient Dynamic Computing Offloading for -- Mobile Edge Computing -- 2.2.1 Joint Optimization of Energy and Queue -- 2.2.2 Dynamic Computation Offloading for Mobile Edge -- Computing -- 2.2.3 Trade-off Between Queue Backlog and Energy Efficiency -- 2.2.4 Convergence and Complexity Analysis -- 2.3 Performance Evaluation -- 2.3.1 Impacts of Parameters -- 2.3.2 Performance Comparison with EA and QW Schemes -- 2.4 Literature Review -- 2.5 Summary -- References -- ix -- x Contents -- 3 Energy Efficient Offloading and Frequency Scaling for Internet of -- Things Devices -- 3.1 System Model and Problem Formulation -- 3.1.1 Network Model -- 3.1.2 Task Model -- 3.1.3 Queuing Model -- 3.1.4 Energy Consumption Model -- 3.1.5 Problem Formulation -- 3.2 COFSEE:Computation Offloading and Frequency Scaling for -- Energy Efficiency of Internet of Things Devices -- 3.2.1 Problem Transformation -- 3.2.2 Optimal Frequency Scaling -- 3.2.3 Local Computation Allocation -- 3.2.4 MEC Computation Allocation -- 3.2.5 Theoretical Analysis -- 3.3 Performance Evaluation -- 3.3.1 Impacts of System Parameters -- 3.3.2 Performance Comparison with RLE,RME and TS Schemes -- 3.4 Literature Review -- 3.5 Summary -- References -- 4 Deep Reinforcement Learning for Delay-aware and Energy-Efficient -- Computation Offloading -- 4.1 System Model and Problem formulation -- 4.1.1 System Mode -- 4.1.2 Problem Formulation -- 4.2 Proposed DRL Method -- 4.2.1 Data prepossessing -- 4.2.2 DRL Model -- 4.2.3 Training -- 4.3 Performance Evaluation -- 4.4 Literature Review -- 4.5 Summary -- References -- 5 Energy-Efficient Multi-task Multi-access Computation Offloading -- via NOMA -- 5.1 System Model and Problem Formulation -- 5.1.1 Motivation -- 5.1.2 System Model -- 5.1.3 Problem Formulation -- 5.2 LEEMMO: Layered Energy-efficient Multi-task Multi-access -- Algorithm -- 5.2.1 Layered Decomposition of Joint Optimization Problem -- Contents xi -- 5.2.2 Proposed Subroutine for Solving Problem (TEM-E-Sub) -- 5.2.3 A Layered Algorithm for Solving Problem (TEM-E-Top) -- 5.2.4 DRL-based Online Algorithm -- 5.3 Performance Evaluation -- 5.3.1 Impacts of Parameters -- 5.3.2 Performance Comparison with FDMA based Offloading -- Schemes -- 5.4 Literature Review -- 5.5 Summary -- Reference -- 6 Conclusion -- 6.1 Concluding Remarks -- 6.2 Future Directions -- References. 
520 |a This book provides a comprehensive review and in-depth discussion of the state-of-the-art research literature and propose energy-efficient computation offloading and resources management for mobile edge computing (MEC), covering task offloading, channel allocation, frequency scaling and resource scheduling. Since the task arrival process and channel conditions are stochastic and dynamic, the authors first propose an energy efficient dynamic computing offloading scheme to minimize energy consumption and guarantee end devices delay performance. To further improve energy efficiency combined with tail energy, the authors present a computation offloading and frequency scaling scheme to jointly deal with the stochastic task allocation and CPU-cycle frequency scaling for minimal energy consumption while guaranteeing the system stability. They also investigate delay-aware and energy-efficient computation offloading in a dynamic MEC system with multiple edge servers, and introduce an end-to-end deep reinforcement learning (DRL) approach to select the best edge server for offloading and allocate the optimal computational resource such that the expected long-term utility is maximized. Finally, the authors study the multi-task computation offloading in multi-access MEC via non-orthogonal multiple access (NOMA) and accounting for the time-varying channel conditions. An online algorithm based on DRL is proposed to efficiently learn the near-optimal offloading solutions. Researchers working in mobile edge computing, task offloading and resource management, as well as advanced level students in electrical and computer engineering, telecommunications, computer science or other related disciplines will find this book useful as a reference. Professionals working within these related fields will also benefit from this book. 
588 0 |a Print version record. 
650 0 |a Edge computing. 
650 0 |a Edge computing  |x Energy consumption. 
650 0 |a Mobile computing. 
650 0 |a Mobile computing  |x Energy consumption. 
650 7 |a Edge computing  |2 fast 
650 7 |a Mobile computing  |2 fast 
700 1 |a Zhang, Ning  |c (Computer scientist),  |e author. 
700 1 |a Wu, Yuan,  |e author. 
700 1 |a Shen, X.  |q (Xuemin),  |d 1958-  |e author.  |1 https://id.oclc.org/worldcat/entity/E39PCjwDCmxmgDCRFjgycMvBHd  |1 https://isni.org/isni/0000000113128394 
776 0 8 |i Print version:  |a Chen, Ying.  |t Energy efficient computation offloading in mobile edge computing.  |d Cham : Springer, 2022  |z 9783031168215  |w (OCoLC)1346945077 
830 0 |a Wireless networks (Springer (Firm)) 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-16822-2  |y Click for online access 
903 |a SPRING-COMP2022 
994 |a 92  |b HCD