|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
on1350617448 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
221111s2022 sz a o 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|e pn
|c YDX
|d GW5XE
|d EBLCP
|d UKAHL
|d OCLCQ
|d OCLCO
|d S9M
|
019 |
|
|
|a 1350690367
|
020 |
|
|
|a 9783031068430
|q (electronic bk.)
|
020 |
|
|
|a 3031068432
|q (electronic bk.)
|
020 |
|
|
|z 9783031068423
|
020 |
|
|
|z 3031068424
|
024 |
7 |
|
|a 10.1007/978-3-031-06843-0
|2 doi
|
035 |
|
|
|a (OCoLC)1350617448
|z (OCoLC)1350690367
|
050 |
|
4 |
|a QA9
|
072 |
|
7 |
|a PBCD
|2 bicssc
|
072 |
|
7 |
|a PBC
|2 bicssc
|
072 |
|
7 |
|a MAT018000
|2 bisacsh
|
072 |
|
7 |
|a PBCD
|2 thema
|
072 |
|
7 |
|a PBC
|2 thema
|
049 |
|
|
|a HCDD
|
245 |
0 |
0 |
|a V.A. Yankov on non-classical logics, history and philosophy of mathematics /
|c Alex Citkin, Ioannis Vandoulakis, editors.
|
264 |
|
1 |
|a Cham :
|b Springer,
|c [2022]
|
264 |
|
4 |
|c ©2022
|
300 |
|
|
|a 1 online resource (xi, 313 pages) :
|b illustrations.
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Outstanding contributions to logic ;
|v volume 24
|
500 |
|
|
|a Includes index.
|
520 |
|
|
|a This book is dedicated to V.A. Yankovs seminal contributions to the theory of propositional logics. His papers, published in the 1960s, are highly cited even today. The Yankov characteristic formulas have become a very useful tool in propositional, modal and algebraic logic. The papers contributed to this book provide the new results on different generalizations and applications of characteristic formulas in propositional, modal and algebraic logics. In particular, an exposition of Yankovs results and their applications in algebraic logic, the theory of admissible rules and refutation systems is included in the book. In addition, the reader can find the studies on splitting and join-splitting in intermediate propositional logics that are based on Yankov-type formulas which are closely related to canonical formulas, and the study of properties of predicate extensions of non-classical propositional logics. The book also contains an exposition of Yankovs revolutionary approach to constructive proof theory. The editors also include Yankovs contributions to history and philosophy of mathematics and foundations of mathematics, as well as an examination of his original interpretation of history of Greek philosophy and mathematics.
|
588 |
0 |
|
|a Online resource; title from PDF title page (SpringerLink, viewed November 17, 2022).
|
505 |
0 |
|
|a Intro -- Preface -- Contents -- Contributors -- 1 Short Autobiography -- Complete Bibliography of Vadim Yankov -- Part I Non-Classical Logics -- 2 V. Yankov's Contributions to Propositional Logic -- 2.1 Introduction -- 2.2 Classes of Logics and Their Respective Algebraic Semantics -- 2.2.1 Calculi and Their Logics -- 2.2.2 Algebraic Semantics -- 2.2.3 Lattices sans serif upper D e d Subscript upper CDedC and sans serif upper L i n d Subscript left parenthesis upper C comma k right parenthesisLind(C,k) -- 2.3 Yankov's Characteristic Formulas -- 2.3.1 Formulas and Homomorphisms
|
505 |
8 |
|
|a 2.3.2 Characteristic Formulas -- 2.3.3 Splitting -- 2.3.4 Quasiorder -- 2.4 Applications of Characteristic Formulas -- 2.4.1 Antichains -- 2.5 Extensions of upper CC-Logics -- 2.5.1 Properties of Algebras bold upper A Subscript iAi -- 2.5.2 Proofs of Lemmas -- 2.6 Calculus of the Weak Law of Excluded Middle -- 2.6.1 Semantics of sans serif upper K upper CKC -- 2.6.2 sans serif upper K upper CKC from the Splitting Standpoint -- 2.6.3 Proof of Theorem2.5 -- 2.7 Some Si-Calculi -- 2.8 Realizable Formulas -- 2.9 Some Properties of Positive Logic -- 2.9.1 Infinite Sequence of Independent Formulas
|
505 |
8 |
|
|a 2.9.2 Strongly Descending Infinite Sequence of Formulas -- 2.9.3 Strongly Ascending Infinite Sequence of Formulas -- 2.10 Conclusions -- References -- 3 Dialogues and Proofs -- Yankov's Contribution to Proof Theory -- 3.1 Introduction -- 3.2 Consistency Proofs -- 3.3 Yankov's Approach -- 3.4 The Calculus -- 3.5 The Dialogue Method -- 3.6 Bar Induction -- 3.7 Proofs -- 3.8 Concluding Remarks -- References -- 4 Jankov Formulas and Axiomatization Techniques for Intermediate Logics -- 4.1 Introduction -- 4.2 Intermediate Logics and Their Semantics -- 4.2.1 Intermediate Logics
|
505 |
8 |
|
|a 4.2.2 Heyting Algebras -- 4.2.3 Kripke Frames and Esakia Spaces -- 4.3 Jankov Formulas -- 4.3.1 Jankov Lemma -- 4.3.2 Splitting Theorem -- 4.3.3 Cardinality of the Lattice of Intermediate Logics -- 4.4 Canonical Formulas -- 4.4.1 Subframe Canonical Formulas -- 4.4.2 Negation-Free Subframe Canonical Formulas -- 4.4.3 Stable Canonical Formulas -- 4.5 Canonical Formulas Dually -- 4.5.1 Subframe Canonical Formulas Dually -- 4.5.2 Stable Canonical Formulas Dually -- 4.6 Subframe and Cofinal Subframe Formulas -- 4.7 Stable Formulas -- 4.7.1 Stable Formulas -- 4.7.2 Cofinal Stable Rules and Formulas
|
505 |
8 |
|
|a 4.8 Subframization and Stabilization -- 4.8.1 Subframization -- 4.8.2 Stabilization -- References -- 5 Yankov Characteristic Formulas (An Algebraic Account) -- 5.1 Introduction -- 5.2 Background -- 5.2.1 Basic Definitions -- 5.2.2 Finitely Presentable Algebras -- 5.2.3 Splitting -- 5.3 Independent Sets of Splitting Identities -- 5.3.1 Quasi-order -- 5.3.2 Antichains -- 5.4 Independent Bases -- 5.4.1 Subvarieties Defined by Splitting Identities -- 5.4.2 Independent Bases in the Varieties Enjoying the Fsi-Spl Property -- 5.4.3 Finite Bases in the Varieties Enjoying the Fsi-Spl Property
|
600 |
1 |
0 |
|a I︠A︡nkov, V. A.
|q (Vadim Anatolʹevich)
|
650 |
|
0 |
|a Proposition (Logic)
|
650 |
|
0 |
|a Mathematics
|x Philosophy.
|
650 |
|
7 |
|a Proposición (Lógica)
|2 embne
|
650 |
|
7 |
|a Matemáticas
|x Filosofía
|2 embne
|
650 |
|
7 |
|a Mathematics
|x Philosophy
|2 fast
|
650 |
|
7 |
|a Proposition (Logic)
|2 fast
|
700 |
1 |
|
|a Citkin, Alex,
|e editor.
|
700 |
1 |
|
|a Vandoulakis, Ioannis,
|e editor.
|
776 |
0 |
8 |
|c Original
|z 3031068424
|z 9783031068423
|w (OCoLC)1312149405
|
830 |
|
0 |
|a Outstanding contributions to logic ;
|v volume 24.
|
856 |
4 |
0 |
|u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-06843-0
|y Click for online access
|
903 |
|
|
|a SPRING-MATH2022
|
994 |
|
|
|a 92
|b HCD
|