Dynamics of compressible fluids : a textbook / Oleksandr Girin.

Compressibility is a property inherent in any material, but it does not always manifest itself. Experience suggests that it affects the medium motion only at velocities comparable to the speed of sound. Why do we study compressibility? It turns out that in order to calculate the aircraft streamlinin...

Full description

Saved in:
Bibliographic Details
Main Author: Girin, Oleksandr (Author)
Format: eBook
Language:English
Published: Cham : Springer, [2022]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1350617667
003 OCoLC
005 20241006213017.0
006 m o d
007 cr cnu|||unuuu
008 221111s2022 sz a ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d GW5XE  |d EBLCP  |d OCLCQ  |d OCL  |d INT  |d OCLCO 
066 |c (S 
019 |a 1350689689  |a 1374610190 
020 |a 9783031112621  |q (electronic bk.) 
020 |a 3031112628  |q (electronic bk.) 
020 |z 9783031112614 
020 |z 303111261X 
020 |a 9788303111265  |q (1) 
020 |a 8303111264 
024 7 |a 10.1007/978-3-031-11262-1  |2 doi 
035 |a (OCoLC)1350617667  |z (OCoLC)1350689689  |z (OCoLC)1374610190 
050 4 |a TA357 
072 7 |a PHD  |2 bicssc 
072 7 |a SCI041000  |2 bisacsh 
072 7 |a PHD  |2 thema 
049 |a HCDD 
100 1 |a Girin, Oleksandr,  |e author. 
245 1 0 |a Dynamics of compressible fluids :  |b a textbook /  |c Oleksandr Girin. 
264 1 |a Cham :  |b Springer,  |c [2022] 
264 4 |c ©2022 
300 |a 1 online resource (xxii, 304 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
347 |a text file  |2 rdaft  |0 http://rdaregistry.info/termList/fileType/1002 
504 |a Includes bibliographical references and index. 
520 |a Compressibility is a property inherent in any material, but it does not always manifest itself. Experience suggests that it affects the medium motion only at velocities comparable to the speed of sound. Why do we study compressibility? It turns out that in order to calculate the aircraft streamlining or the internal flow in its engine, or the shell muzzle velocity, or the dynamic load of a shock wave from an accidental blast on a structural element, and in many other cases it is necessary to know and understand the laws of the Dynamics of Compressible Media (DCM) and be able to apply them in practice. This textbook is designed to help readers achieve this goal and learn the basics of DCM. This field of knowledge is high-tech and always focuses on the future: modern developments of hypersonic aircraft, designing more advanced structural elements for airplanes and helicopters, calculating the car aerodynamics, etc. Paradoxes have always given impetus to the search for new technological devices. Unusual effects in DCM include the flow chocking in supersonic outflow from reservoirs (Sect.2.2); the shock wave formation inside an initially smooth flow (Sect.5.3); the generation of a "spallation saucer" of armor inside a tank when a shell hits it (Sect.5.5); the dog-leg of a plane discontinuity surface at shockwave reflection from a rigid wall (Sec.8.1). The way to understand these and other effects is through the creation of quantitative models of a moving compressible fluid. 
588 0 |a Online resource; title from PDF title page (SpringerLink, viewed November 22, 2022). 
505 0 |a Intro -- Preface -- Contents -- About the Author -- Introduction -- 1. Scope of the Dynamics of Compressible Fluids -- 2. The Subject Matter of Dynamics of Compressible Fluids -- 1 General Equations of Gas Motion -- 1.1 The Thermodynamic Model of a Perfect Gas -- Adiabatic Formulae -- 1.1.1 Internal State of a Gas Particle -- Thermodynamic Variables -- 1.1.2 Perfect Gas Model -- Polytropic Gas -- 1.1.3 Adiabatic Formulae -- 1.2 Governing Equations of Gas Motion -- Mathematical Model ... -- 1.3 Speed of Propagation of Small Disturbances in Ideal Gas -- Sound Speed 
505 8 |a 1.4 Thermodynamics of a Moving Gas -- 1.4.1 Bernoulli-Saint-Venant Equation -- Enthalpy -- 1.4.2 Stagnation Gas State -- Isentropic Formulae -- 1.4.3 Laval's Number -- Other Characteristic States of a Moving Gas -- References -- 2 Continuous Flows -- 2.1 Equations of One-Dimensional Steady Gas Flow -- Rule of a Stream Reversal -- 2.2 Gas Outflow from Reservoir -- Saint-Venant-Vantzel Formula -- 2.3 Supersonic Outflow Mode -- Laval's Nozzle -- References -- 3 Discontinuity in a Gas Flow -- 3.1 Conservation Laws at a Strong Discontinuity Surface -- 3.2 Classification of Strong Discontinuities 
505 8 |a Shocks -- 3.3 Normal Shock Theory -- 3.4 Normal Shock Regularities -- 3.4.1 Velocity Jump -- 3.4.2 Pressure Jump -- 3.4.3 Density Jump -- 3.4.4 Entropy Jump -- 3.5 Shock Adiabatic Curve and Its Properties -- 3.5.1 Equation of Shock Adiabatic Curve -- 3.5.2 ``Asterisk'' Property -- 3.5.3 Limiting Degree of Gas Compression in Shock Waves -- 3.5.4 Approximation of Strong Shocks -- 3.5.5 Approximation of Weak Shocks -- References -- 4 Governing Equations and Initial-Boundary-Value Problems -- 4.1 Geometry of One-Dimensional Flows -- 4.2 Equations of Motion in Euler's Form 
505 8 |a Initial and Boundary Conditions -- 4.2.1 Euler's Equations of Motion -- 4.2.2 Initial Conditions -- 4.2.3 Boundary Conditions -- 4.3 Equations of Motion in Lagrange's Form -- 4.4 Equations of Motion in Characteristic Form -- the Characteristic ... -- 4.5 The Method of Characteristics -- 4.6 Generalized Cauchy Problem (Type I Problem) ... -- 4.7 The Goursat Problem (Type II Problem) -- 4.8 Combined Problem of a Special Type (Type III Problem) -- 4.9 Characteristics as Trajectories of a Possible Weak Discontinuity of a Solution -- 4.9.1 Relationships Along the Weak Discontinuity Trajectory 
650 0 |a Fluid dynamics. 
650 0 |a Compressibility. 
650 7 |a Fluid dynamics  |2 fast 
650 7 |a Compressibility  |2 fast 
776 0 8 |c Original  |z 303111261X  |z 9783031112614  |w (OCoLC)1330406741 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-11262-1  |y Click for online access 
880 8 |6 505-00/(S  |a 4.9.2 Breakup of Arbitrary Weak Discontinuity -- References -- 5 Isentropic Gas Flows with Plane Waves -- 5.1 Riemann Method -- 5.1.1 Riemann Invariants -- 5.1.2 Riemann Variables -- Riemann Method -- 5.1.3 The Euler-Poisson Equation -- 5.1.4 The Remarkable Case γ= 3 -- 5.2 The Riemann Waves -- 5.2.1 Simple Waves -- 5.2.2 Adjoining Theorem -- 5.2.3 Simple Wave Equations -- 5.2.4 Properties of Simple Waves -- 5.3 Gradient Catastrophe -- 5.4 The Piston Problem -- 5.4.1 Case When the Piston Is Pulled Out from Gas -- 5.4.2 Case of Piston Moving with Constant Velocity 
903 |a SPRING-PHYSICS2022 
994 |a 92  |b HCD