|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
on1353836715 |
003 |
OCoLC |
005 |
20241006213017.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
221209s2022 sz a ob 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|e pn
|c YDX
|d GW5XE
|d EBLCP
|d VLB
|d OCLCQ
|d OCLCF
|d UKAHL
|d INT
|d OCLCO
|
019 |
|
|
|a 1354205709
|a 1374609683
|
020 |
|
|
|a 9783031171994
|q (electronic bk.)
|
020 |
|
|
|a 3031171993
|q (electronic bk.)
|
020 |
|
|
|z 9783031171987
|
020 |
|
|
|z 3031171985
|
020 |
|
|
|a 9788303117199
|q (4)
|
020 |
|
|
|a 830311719X
|
024 |
7 |
|
|a 10.1007/978-3-031-17199-4
|2 doi
|
035 |
|
|
|a (OCoLC)1353836715
|z (OCoLC)1354205709
|z (OCoLC)1374609683
|
050 |
|
4 |
|a TK7871.85
|
072 |
|
7 |
|a TJFD5
|2 bicssc
|
072 |
|
7 |
|a TEC008090
|2 bisacsh
|
072 |
|
7 |
|a TJFD
|2 thema
|
049 |
|
|
|a HCDD
|
100 |
1 |
|
|a Chaudhuri, Reet,
|e author.
|
245 |
1 |
0 |
|a Integrated electronics on aluminum nitride :
|b materials and devices /
|c Reet Chaudhuri.
|
264 |
|
1 |
|a Cham :
|b Springer,
|c [2022]
|
264 |
|
4 |
|c ©2022
|
300 |
|
|
|a 1 online resource (xvi, 255 pages) :
|b illustrations (chiefly color).
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|2 rdaft
|0 http://rdaregistry.info/termList/fileType/1002
|
490 |
1 |
|
|a Springer theses
|
500 |
|
|
|a "Doctoral thesis accepted by Cornell University, USA."
|
504 |
|
|
|a Includes bibliographical references.
|
520 |
|
|
|a This thesis outlines the principles, device physics, and technological applications of electronics based on the ultra-wide bandgap semiconductor aluminum nitride. It discusses the basic principles of electrostatics and transport properties of polarization-induced two-dimensional electron and hole channels in semiconductor heterostructures based on aluminum nitride. It explains the discovery of high-density two-dimensional hole gases in undoped heterojunctions, and shows how these high conductivity n- and p-type channels are used for high performance nFETs and pFETs, along with wide bandgap RF, mm-wave, and CMOS applications. The thesis goes on to discuss how the several material advantages of aluminum nitride, such as its high thermal conductivity and piezoelectric coefficient, enable not just high performance of transistors, but also monolithic integration of passive elements such as high frequency filters, enabling a new form factor for integrated RF electronics.
|
588 |
0 |
|
|a Online resource; title from PDF title page (SpringerLink, viewed December 28, 2022).
|
505 |
0 |
|
|a Intro -- Supervisor's Foreword -- Acknowledgments -- Contents -- Parts of This Thesis Have Been Published in the Following Journal Articles -- 1 Introduction -- 1.1 Brief History of Semiconductors in Communication -- 1.2 Layout of this Dissertation -- References -- 2 Polarization-Induced 2D Hole Gases in Undoped (In)GaN/AlN Heterostructures -- 2.1 Introduction -- 2.2 Polarization Charges in III-Nitride Heterostructures -- 2.3 The Undoped GaN/AlN 2DHG -- 2.4 Impurity Blocking Layers in the AlN Buffer Layer -- 2.5 Very High density InGaN/AlN 2DHGs -- 2.6 Conclusions -- 2.7 Future Directions
|
505 |
8 |
|
|a 4.4.3 Shubhnikov-de-Haas Oscillations -- 4.5 Future Directions -- References -- 5 AlN/GaN/AlN High Electron Mobility Transistors -- 5.1 Introduction -- 5.2 Thermal Advantage of AlN Buffer Layer -- 5.3 MBE-Grown AlN Buffer Layers on SiC for RF HEMTs -- 5.4 State-of-Art AlN/GaN/AlN HEMTs -- 5.5 In-situ AlN Passivation for Reduced Dispersion -- 5.5.1 GaN Channel Strain in AlN/GaN/AlN Heterostructures -- 5.5.2 2DEG Transport in In-situ Passivated AlN/GaN/AlN Heterostructures -- 5.5.3 Reduced Dispersion in AlN/GaN/AlN HEMTs -- 5.6 Enhancement-Mode AlN/GaN/AlN MOS-HEMTs with Ultra-Thin 3nm GaN Channels
|
505 |
8 |
|
|a 5.7 Future Directions -- References -- 6 Integrated RF Electronics on the AlN Platform -- 6.1 Introduction -- 6.2 Survey of GaN-Based CMOS-Logic Realizations -- 6.3 AlN-Based CMOS Realizations -- 6.4 In-situ Sublimation Etch of GaN -- 6.5 Passive RF Devices on AlN Platform -- 6.5.1 Epitaxial AlN Bulk Acoustic Waveguide Resonators -- 6.5.2 SiC Substrate Integrated Waveguides (SIW) -- References -- 7 Epitaxial Growth of AlN-Based Heterostructures for Electronics -- 7.1 PA-MBE Growth of GaN/AlN 2DHGs -- 7.1.1 Detailed Growth Recipe -- 7.1.2 Variations in the 2DHG Active Region
|
505 |
8 |
|
|a 7.1.3 Growth Condition Optimization Studies -- Optimizing the GaN/AlN Interface -- Large Area Growths -- 7.2 PA-MBE Growth of AlN/GaN/AlN 2DEGs -- 7.2.1 In-situ Cleaning of 6H-SiC -- 7.2.2 Detailed Growth Recipe -- 7.2.3 In-situ AlN passivated AlN/GaN/AlN HEMTs -- References -- 8 Electronics on Single-Crystal, Bulk AlN Substrates -- 8.1 Single-Crystal AlN Substrates for Transistors -- 8.2 Early Results -- References -- A Author's Biographical Sketch
|
650 |
|
0 |
|a Semiconductors.
|
650 |
|
0 |
|a Aluminum nitride.
|
650 |
|
7 |
|a semiconductor.
|2 aat
|
650 |
|
7 |
|a Aluminum nitride
|2 fast
|
650 |
|
7 |
|a Semiconductors
|2 fast
|
776 |
0 |
8 |
|c Original
|z 3031171985
|z 9783031171987
|w (OCoLC)1342490495
|
830 |
|
0 |
|a Springer theses.
|
856 |
4 |
0 |
|u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-17199-4
|y Click for online access
|
903 |
|
|
|a SPRING-PHYSICS2022
|
994 |
|
|
|a 92
|b HCD
|