Reliability-based optimization of floating wind turbine support structures / Mareike Leimeister.

This book pursues the ambitious goal of combining floating wind turbine design optimization and reliability assessment, which has in fact not been done before. The topic is organized into a series of very ambitious objectives, which start with an initial state-of-the-art review, followed by the deve...

Full description

Saved in:
Bibliographic Details
Main Author: Leimeister, Mareike
Format: eBook
Language:English
Published: Cham : Springer, 2023.
Series:Springer theses.
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 a 4500
001 on1357018020
003 OCoLC
005 20240909213021.0
006 m o d
007 cr un|---aucuu
008 230107s2023 sz o 000 0 eng d
040 |a EBLCP  |b eng  |c EBLCP  |d VLB  |d GW5XE  |d YDX  |d EBLCP  |d OCLCQ  |d OCLCF  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO  |d OCLCQ 
019 |a 1356877928 
020 |a 9783030968892  |q (electronic bk.) 
020 |a 3030968898  |q (electronic bk.) 
020 |z 9783030968885 
020 |z 303096888X 
024 7 |a 10.1007/978-3-030-96889-2  |2 doi 
035 |a (OCoLC)1357018020  |z (OCoLC)1356877928 
050 1 4 |a TJ820  |b .L45 2023eb 
072 7 |a THX  |2 bicssc 
072 7 |a TEC031010  |2 bisacsh 
072 7 |a THVW  |2 thema 
049 |a HCDD 
100 1 |a Leimeister, Mareike. 
245 1 0 |a Reliability-based optimization of floating wind turbine support structures /  |c Mareike Leimeister. 
260 |a Cham :  |b Springer,  |c 2023. 
300 |a 1 online resource (336 p.). 
490 1 |a Springer Theses 
500 |a Description based upon print version of record. 
505 0 |a Intro -- Supervisors' Foreword -- Abstract -- Acknowledgements -- Contents -- Nomenclature -- Latin Symbols -- Greek Symbols -- Abbreviations -- List of Figures -- List of Tables -- 1 Introduction -- 1.1 Potential of Floating Offshore Wind Technology -- 1.2 Challenges Towards Next Generation Floating Offshore Wind Turbines -- 1.3 Aim and Objectives -- 1.4 Thesis Structure -- 1.5 Publications in Connection with the Research Thesis -- References -- 2 Review of Reliability-Based Risk Analysis Methods Used in the Offshore Wind Industry -- 2.1 Classification of Reliability Methods 
505 8 |a 2.1.1 Qualitative Reliability Methods -- 2.1.2 Semi-Quantitative Reliability Methods -- 2.1.3 Quantitative Reliability Methods -- 2.2 Approaches for Qualitative Reliability Analyses of Offshore Wind Turbine Systems -- 2.2.1 Failure Mode Analyses -- 2.2.2 Tree-Shaped, Diagrammatic, and Graphical Analyses -- 2.2.3 Hazard Analyses -- 2.3 Approaches for Quantitative Reliability Analyses of Offshore Wind Turbine Systems -- 2.3.1 Analytical Methods -- 2.3.2 Stochastic Methods -- 2.3.3 Bayesian Inference -- 2.3.4 Reliability-Based Design Optimization -- 2.3.5 Multivariate Analyses 
505 8 |a 2.3.6 Data Foundations -- 2.4 Discussion of Reliability Methods for Offshore Wind Turbine Systems -- References -- 3 Floating Offshore Wind Turbine Systems -- 3.1 Critical Review of Floating Support Structures Focusing on Offshore Wind Farm Deployment -- 3.1.1 Review of FOWT Support Structures -- 3.1.2 Assessment of FOWT Support Structures -- 3.2 Reference Spar-Buoy Floating Wind Turbine System -- 3.2.1 Wind Turbine and Tower -- 3.2.2 Floating Structure and Station-Keeping System -- References -- 4 Modeling, Automated Simulation, and Optimization 
505 8 |a 4.1 Development and Verification of a Numerical FOWT System Model of Dynamics -- 4.1.1 Numerical Modeling of the Reference Spar-Buoy FOWT System in MoWiT -- 4.1.2 Code-to-Code Comparison -- 4.1.3 Discussion of the Code-to-Code Comparison Results -- 4.2 Development of a Numerical Framework for Wind Turbine Design and Optimization -- 4.2.1 Framework for Automated Simulation -- 4.2.2 Application for DLC Simulations -- 4.2.3 Incorporation of Optimization Functionalities -- 4.2.4 Discussion of the Broad Application Range of the Framework to Wind Turbine System Optimization Tasks 
505 8 |a 4.3 Appendix to Chap. 4 -- 4.3.1 Statistics of DLC 4.2 -- 4.3.2 Statistics of DLC 5.3 -- References -- 5 Design Optimization of Floating Wind Turbine Support Structures -- 5.1 Design Optimization Based on Global Limit States -- 5.1.1 Description of the System to Optimize -- 5.1.2 Optimization Problem of the Global Design Optimization Task -- 5.1.3 Optimization Approach for the Design Optimization Based on Global Limit States -- 5.1.4 Results of the Design Optimization Based on Global Limit States -- 5.1.5 Discussion of the Design Optimization Approach Based on Global Limit States 
500 |a 5.2 Designing a Complex Geometry Spar-Type FOWT Support Structure 
520 |a This book pursues the ambitious goal of combining floating wind turbine design optimization and reliability assessment, which has in fact not been done before. The topic is organized into a series of very ambitious objectives, which start with an initial state-of-the-art review, followed by the development of high-fidelity frameworks for a disruptive way to design next generation floating offshore wind turbine (FOWT) support structures. The development of a verified aero-hydro-servo-elastic coupled numerical model of dynamics for FOWTs and a holistic framework for automated simulation and optimization of FOWT systems, which is later used for the coupling of design optimization with reliability assessment of FOWT systems in a computationally and time-efficient manner, has been an aim of many groups internationally towards implementing a performance-based/goal-setting approach in the design of complex engineering systems. The outcomes of this work quantify the benefits of an optimal design with a lower mass while fulfilling design constraints. Illustrating that comprehensive design methods can be combined with reliability analysis and optimization algorithms towards an integrated reliability-based design optimization (RBDO) can benefit not only the offshore wind energy industry but also other applications such as, among others, civil infrastructure, aerospace, and automotive engineering. 
650 0 |a Offshore wind power plants  |x Design and construction. 
650 0 |a Offshore wind power plants  |x Mathematical models. 
650 0 |a Mathematical optimization. 
650 0 |a Reliability (Engineering) 
650 7 |a Mathematical optimization  |2 fast 
650 7 |a Reliability (Engineering)  |2 fast 
655 0 |a Electronic books. 
776 0 8 |i Print version:  |a Leimeister, Mareike  |t Reliability-Based Optimization of Floating Wind Turbine Support Structures  |d Cham : Springer International Publishing AG,c2023  |z 9783030968885 
830 0 |a Springer theses. 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-030-96889-2  |y Click for online access 
903 |a SPRING-ENERGY2022 
994 |a 92  |b HCD