Algebraic curves and Riemann surfaces for undergraduates : the theory of the donut / Anil Nerode, Noam Greenberg.

The theory relating algebraic curves and Riemann surfaces exhibits the unity of mathematics: topology, complex analysis, algebra and geometry all interact in a deep way. This textbook offers an elementary introduction to this beautiful theory for an undergraduate audience. At the heart of the subjec...

Full description

Saved in:
Bibliographic Details
Main Authors: Nerode, Anil, 1932- (Author), Greenberg, Noam (Author)
Format: eBook
Language:English
Published: Cham, Switzerland : Springer, [2022]
Subjects:
Online Access:Click for online access

MARC

LEADER 00000cam a2200000 i 4500
001 on1362500169
003 OCoLC
005 20241118213016.0
006 m o d
007 cr cnu---unuuu
008 230128s2022 sz ob 001 0 eng d
040 |a YDX  |b eng  |e rda  |c YDX  |d GW5XE  |d YDX  |d OCLCF  |d SFB  |d OCLCO  |d S9M 
020 |a 9783031116162  |q electronic book 
020 |a 303111616X  |q electronic book 
020 |z 3031116151 
020 |z 9783031116155 
024 7 |a 10.1007/978-3-031-11616-2  |2 doi 
035 |a (OCoLC)1362500169 
050 4 |a QA565  |b .N47 2022 
072 7 |a PBMW  |2 bicssc 
072 7 |a MAT012010  |2 bisacsh 
072 7 |a PBMW  |2 thema 
049 |a HCDD 
100 1 |a Nerode, Anil,  |d 1932-  |e author. 
245 1 0 |a Algebraic curves and Riemann surfaces for undergraduates :  |b the theory of the donut /  |c Anil Nerode, Noam Greenberg. 
264 1 |a Cham, Switzerland :  |b Springer,  |c [2022] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a 1 Introduction -- Part I Algebraic curves -- 2 Algebra -- 3 Affine space -- 4 Projective space -- 5 Tangents -- 6 Bezouts theorem -- 7 The elliptic group -- Part II Riemann Surfaces -- 8 Quasi-Euclidean spaces -- 9 Connectedness, smooth and simple -- 10 Path integrals -- 11 Complex differentiation -- 12 Riemann surfaces -- Part III Curves and surfaces -- 13 Curves are surfaces -- 14 Elliptic functions and the isomorphism theorem -- 15 Puiseux theory -- 16 A brief history of elliptic functions. 
520 |a The theory relating algebraic curves and Riemann surfaces exhibits the unity of mathematics: topology, complex analysis, algebra and geometry all interact in a deep way. This textbook offers an elementary introduction to this beautiful theory for an undergraduate audience. At the heart of the subject is the theory of elliptic functions and elliptic curves. A complex torus (or "donut") is both an abelian group and a Riemann surface. It is obtained by identifying points on the complex plane. At the same time, it can be viewed as a complex algebraic curve, with addition of points given by a geometric "chord-and-tangent" method. This book carefully develops all of the tools necessary to make sense of this isomorphism. The exposition is kept as elementary as possible and frequently draws on familiar notions in calculus and algebra to motivate new concepts. Based on a capstone course given to senior undergraduates, this book is intended as a textbook for courses at this level and includes a large number of class-tested exercises. The prerequisites for using the book are familiarity with abstract algebra, calculus and analysis, as covered in standard undergraduate courses. 
504 |a Includes bibliographical references and index. 
588 |a Description based on online resource; title from digital title page (viewed on March 14, 2023). 
650 0 |a Curves, Algebraic. 
650 0 |a Geometry, Algebraic. 
650 0 |a Riemann surfaces. 
650 7 |a Curvas algebraicas  |2 embne 
650 7 |a Geometría algebraica  |2 embne 
650 7 |a Superficies riemannianas  |2 embne 
650 7 |a Curves, Algebraic  |2 fast 
650 7 |a Geometry, Algebraic  |2 fast 
650 7 |a Riemann surfaces  |2 fast 
650 7 |a Corbes algebraiques.  |2 thub 
650 7 |a Geometria algebraica.  |2 thub 
650 7 |a Superfícies de Riemann.  |2 thub 
655 7 |a Llibres electrònics.  |2 thub 
700 1 |a Greenberg, Noam,  |e author. 
776 0 8 |c Original  |z 3031116151  |z 9783031116155  |w (OCoLC)1330690603 
856 4 0 |u https://holycross.idm.oclc.org/login?auth=cas&url=https://link.springer.com/10.1007/978-3-031-11616-2  |y Click for online access 
903 |a SPRING-MATH2022 
994 |a 92  |b HCD